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1.  Huygens on scientific reasoning 

Christian Huygens, in his Treatise on Light (1678), described a 

new “kind of demonstration” that is useful in science.  This form 

of reasoning is now known as the “hypothetico-deductive method”.  

One finds in this subject a kind of demonstration which does 
not carry with it so high a degree of certainty as that employed 
in geometry; and which differs distinctly from the method 
employed by geometers in that they prove their propositions 
by well-established and incontrovertible principles, while here 

principles are tested by the inferences which are derivable from them.  
The nature of the subject permits no other treatment.  It is 
possible, however, in this way to establish a probability which 
is little short of certainty.  This is the case when the 
consequences of the assumed principles are in perfect accord 
with the observed phenomena, and especially when these 
verifications are very numerous; but above all when one 
employs the hypothesis to predict new phenomena and finds 
his expectations realized. 
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One might wonder how the subject of optics is so special that it 

requires a new form of reasoning?  Huygens’ Treatise was actually 

the first book in the history of science that attempted a precise 

mathematical description of structures that are entirely invisible!  

Huygens proposed that light consists of vibrations within an 

invisible elastic material (which he called the ‘ether’) that fills all 

of space.  Thus, while of course our eyes detect light, the true 

nature of light (the movements of the particles of ether, the 

wavelength of the vibrations, the shape of the wavefronts, etc.) are 

invisible.  This is quite different from ordinary mechanics, which 

concerns visible particles (billiard balls, planets, etc.)  Consider for 

example the standard diagram below, showing plane waves 

approaching a solid yellow barrier with a small hole in it, so that 

the hole becomes a source of spherical waves.  These wavefronts 

are of course not actually visible, so that (as Huygens says) we 

have to judge this model by what it predicts concerning things that 

we can observe.  
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To see how this works, let H be some proposed scientific principle 

or law.  To test H, we derive a prediction, or observational 

consequence from H, i.e. we show logically that if H is true then 

some observable event E should occur, when we do a certain 

experiment.  Then of course we do an experiment to see if E 

actually occurs.  Huygens notes that if E is observed to occur, then 

this does not prove with certainty that H is true.  “I do not think 
that we know anything very certainly but all probably.”  But if H 

predicts many separate events that agree with observation, and 

especially if some of those observations were previously unknown, 

then Huygens says that H can be very probable, indeed almost 

certain.  Huygens’ argument therefore has the following structure: 

 1. H predicts phenomena E1, E2 and E3 

 2. E1, E2 and E3 are observed to occur 

 --------------- 

 H is probably true 

 

Huygens doesn’t say here that the ‘principles’ like H that can be 

used to predict phenomena also explain those phenomena, but in 

many cases this will be so.  For example, in optics one can predict 

the shape, size and location of a shadow, in a given experiment, 

using the principle that light travels in straight lines.  This principle 

also seems to explain why shadows form as they do.  In general, 

scientific laws are taken to explain particular facts.  For example, 

Newton’s law of gravity explains (or helps to explain) why the 

earth orbits the sun along an ellipse. 
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2.  Huygens’ method is incomplete 

Let us see how Huygens’ form of argument handles a particular 

example.  Let E1, E2 and E3 specify the outcomes of three tosses of 

a coin, say heads in each case.  Further, let H be the putative “law” 

that this particular coin always lands heads (i.e. the chance of 

heads is one).  We see that premise 1 is true here – in fact the 

prediction is certain, having probability one, since according to H 

the coin is bound to lands each time.  Also premise 2 is true.  So is 

the conclusion true as well?  Is H (the claim that the coin always 

lands heads) probably true?  Can we perhaps even calculate its 

probability? 

If you’re like me, then you might be reluctant to say that H is 

probably true.  For one thing, there are many alternatives to H that 

also predict E1, E2 and E3, although not with certainty.  For 

example the coin might actually be fair, with an equal chance of 

heads and tails (0.5), and just happened to have landed heads on 

these three tosses.  The chance of this occurring, 1/8, or 0.125, is 

not particularly small.  Also, if the coin is biased towards heads, it 

need not be as strong a bias as H claims.  For example, if the 

chance of heads on each toss is 0.9 rather than 0.5, then the chance 

of 3 heads in 3 tosses is a very respectable 0.729.  The hypothesis 

H is therefore just one possibility among many. 

Another argument against H being probably true is the fact that it’s 

hard to see how a coin could be made to land heads every time.  

The coin looks normal, let’s suppose, with the Queen’s head on 

one side and “tails” (no head) on the other.  It seems rather 

unlikely that such a normal-looking coin could be sure to land 

heads on all tosses, doesn’t it? 
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Notice how, in the previous paragraph, I said that H is “rather 

unlikely”.  This seems to be an assignment of probability (low 

probability in this case) but what kind of probability is this?  It is 

certainly a kind of epistemic probability rather than physical 

probability or chance, as H is a proposition that is already either 

true or false, not a future event that may or may not occur.  Notice 

also that this (low) probability has nothing to do with the data E1, 

E2 and E3 (three heads), for these data actually support H, and thus 

cannot reduce its probability.  E1, E2 and E3 are exactly what we 

should expect to get, if H were true.  So the improbability of H has 

nothing to do with the data, and is therefore said to be “prior to” 

the data. 

Let’s recap.  We have some data, and a hypothesis that predicts the 

data perfectly.  Yet we’re reluctant to say that the hypothesis is 

probably true on this basis, for two reasons: 

(1) The scheme takes no account of the alternatives to H 

that might exist, and 

(2) The hypothesis H in question seems to have a low 

prior probability; it seems unlikely given our 

background information, or general knowledge of 

things. 

It appears therefore that Huygens’ argument scheme is incomplete, 

and we should investigate how to fill in these gaps. 

 

3.  Applying probabilities to induction 

From what we have seen so far, scientific (or inductive) reasoning 

seems to involve at least two kinds of probability.  The first kind 

measures the strength of an empirical prediction.  A deductive (i.e. 



6 
 

certain) prediction has a probability of one, whereas we saw that 

the fair-coin hypothesis predicts three heads in three tosses 

somewhat weakly, with a probability of just 0.125.  This degree-

of-prediction kind of probability is technically known as the 

likelihood of the evidence, under some hypothesis, and is written 

P(E | H).  The second kind of probability, the “prior” probability of 

the hypothesis itself, is written P(H). 

Since inductive reasoning seems heavily dependent on 

probabilities, we should see what the probability calculus can tell 

us about it.  The probability calculus is based on four axioms that 

are rational constraints on partial belief.  A person whose degrees 

of belief fail to conform to the axioms of probability is thereby 

irrational or logically inconsistent.  This can be argued for in a 

variety of ways.  For example, one can derive some of the axioms 

from the principle that if two sets of gambles are “financially 

equivalent”, in the sense of yielding exactly the same loss or gain 

in every possible outcome, then they are of equal value.  So what 

does the probability calculus have to say about inductive reasoning? 

In Huygens’ argument form, the basic inference can be expressed 

as follows, using probability notation.  For simplicity, I am 

including just one empirical statement E now, rather than three. 

 1.  P(E | H) is high 

 2.  E is observed to occur 

 --------------------- 

 P(H | E) is high 

 

Writing the argument in this fashion highlights an important detail, 

namely that the argument is essentially one of “turning the 

probabilities backwards”, i.e. of going from P(E | H) to P(H | E).  

Is there any theorem of the probability calculus that enables us to 
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turn probabilities around like this?  Indeed there is – it is the 

famous theorem of Rev. Thomas Bayes.  Bayes’ theorem can be 

expressed in its simplest form as follows.  (Note that the ‘K’ in the 

subscripts refers to the background knowledge.  See the probability 

handout on the iweb for more details about that.) 
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This form shows the basic fact that P(H | E) can be calculated from 

P(E | H), as Huygens requires, but it also shows that other 

probabilities are logically needed.  The P(H) term, in the 

numerator, is the prior probability that we have already identified 

and seen the need for.  The P(E) term in the denominator is harder 

to make sense of.  It literally means the epistemic probability, in 

the state of knowledge K, of the evidence E itself.  But how can E 

have a probability, apart from any hypothesis?  Some hypotheses 

will predict E, and others won’t, or to be more precise E will be 

predicted strongly by some hypotheses and weakly by others.  But 

absent any hypothesis, surely there is no well-defined probability 

for E? 

The term P(E) can be clarified by replacing with an equivalent sum, 

using the theorem of total probability, 2nd form (again see the 

“Probability Basics” handout).  It shows that P(E) can be regarded 

as the average probability of E, under all possible hypotheses, 

where the average is weighted by the prior probabilities of these 

hypotheses. 

PK(E) = PK(E | H1)PK(H1) + PK(E | H2)PK(H2) + ... + PK(E |Hn)PK(Hn). 

In this equation, H1, H2, … , Hn are all the possible hypotheses that 

might be used to explain E.  They’re assumed to be mutually 
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inconsistent, so no more than one of them can be true.  Obviously 

H, the hypothesis we’re calculating P(H | E) for, is one of these 

hypotheses, so let’s say it’s H1.  In that case, you’ll notice that the 

first term in the sum, i.e. PK(E | H1)PK(H1), is identical to the top 

of the fraction in Bayes’ theorem.  The remaining terms in the 

expansion of P(E) are exactly similar terms, for all of the other 

possible hypotheses.  Each term is the prior of some hypothesis, 

multiplied by the likelihood of E under that hypothesis. 

Overall, therefore, the conclusion of an inductive argument, that H 

is probable given all our evidence, depends on just the priors and 

likelihoods of all possible hypotheses.  (That’s what the probability 

calculus says, anyway.)  Now, Bayes’ theorem might seem rather 

complicated, but we can simplify what it really means by using the 

fact that it consists of a lot of product terms like P(E |Hi)P(Hi).  If 

hypothesis Hi is to be a good or strong explanation of E, then 

P(E|Hi) and P(Hi) should both be as high as possible.  The best 

hypotheses are those that  

(i) seem plausible, given our background information, and  

(ii) predict the evidence strongly.   

Hence the product P(E |Hi)P(Hi) seems like a good measure of the 

overall strength of Hi as an explanation of E, and so can be written 

Strength(Hi).  Bayes’ theorem then simplifies to: 

.
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In other words, you can conclude that H is probably true 

(probability greater than 0.5) when its strength is greater than the 

strengths of all the alternatives added together.  Thus, we see that 

Bayes’s theorem accomplishes what we set out to do.  It shows 
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how to make Huygens’ reasoning rigorous, by including some 

suitable consideration of alternative hypotheses and prior 

probabilities.  Philosophers who use Bayes’ theorem in this way 

are called Bayesians. 

 

4. Bayesian inference and induction 

Now let us see how this logical analysis applies to the problem of 

induction, and in particular to Hume’s question of how inductive 

reasoning can be rationally justified.  We are off to a good start, 

since Bayes’ theorem itself is on a sound logical footing, being a 

theorem of the probability calculus.  This means that it is a logical 

consequence of the probability axioms, and these in turn have been 

shown to be required for rational consistency.  So, to show that an 

inductive conclusion is rationally justified, we only have to show 

that the input terms (the Strength terms) are rationally justified. 

Each Strength term is a product of a likelihood with a prior, so let 

us consider these in turn.  The likelihood terms are relatively 

unproblematic, since they are (more or less) logically derived from 

the hypothesis in question.  Whether (or to what degree) H predicts 

E is basically just a logical relation between H and E, and such 

logical truths can be known a priori.  It’s actually not quite so 

straightforward as this, since in general, the value of  

P(E | H) will depend on the background knowledge K.  That’s why 

it’s better to write the likelihood as PK(E | H), to make the 

dependence on K explicit.  This role of the background knowledge 

in making predictions was noted especially by Pierre Duhem, and 

it forms the basis of what is known as the Duhem Problem (or 

sometimes the Duhem-Quine Problem). 
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[Aside: A good example of how predictions depend on background 

knowledge, in addition to the specific hypothesis being tested, is the 

problem of the stellar parallax for Copernicus (and Kepler and 

Galileo).  The Copernican model of the universe made the earth a 

planet, orbiting the sun in a huge circle through the heavens.  

According to this model, there ought to have been an “annual stellar 

parallax”, i.e. a shift in the apparent positions of stars, over the 

course of a year, due to the earth’s own motion relative to the outer 

sphere of the fixed stars.  Yet no such parallax was observed.  

Aristotle argued on this basis that the earth was stationary, and this 

seemed a very solid argument for almost the next 2,000 years.  

Copernicus on the other hand noted that this “prediction” of a stellar 

parallax, using his model, involved a background assumption, that 

the stellar sphere was comparable in size to the sphere of the earth’s 

orbit.  Copernicus calculated that if the stellar sphere was at least 

7,000 times greater than the earth’s orbit, then the annual stellar 

parallax would be “invisible to the eyes” – too small to detect.] 

Anyhow, ignoring the Duhem problem for the time being, the 

likelihoods are logical in character, and hence knowable a priori, 

just as arithmetic is knowable.  Now what about the priors? 

In this reading I shall argue for the follow claims about priors: 

(i) The priors cannot be justified in purely logical terms.   

(ii) If rationalism is true then the priors can be justified, 

though using methods that are not purely logical. 

(iii) If empiricism is true, then the priors cannot be justified at 

all. 

First let us think back to the discussion of rationalist arguments in 

physics, concerning colliding particles, bodies in free fall, levers 

and so on.  The rationalists (Descartes, Huygens, Leibniz, Stevin, 
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Euler, etc.) were attempting to derive laws governing these 

situations a priori, from pure reasoning.  For example, Huygens 

used the principle that a symmetrical cause must have a 

symmetrical effect, as well the relativistic principle that laws of 

physics must hold in uniformly-moving frames as well as in rest 

frames.  If such rationalist arguments are completely successful, 

then the law thus derived (a priori) will have a prior probability of 

1.  Bayesians, however, do not require the prior probability of a 

successful scientific theory to equal 1.  For one thing, scientific 

theories are never certain, even at the best of times.  (“I do not 
think that we know anything very certainly but all probably”, as 

Huygens said.)  More importantly, the probability of the theory 

will be raised if it is supported by empirical evidence, i.e. by 

empirical statements that the theory predicts, and which are also 

observed to be true.  Huygens’ collision laws might only be 

plausible when first argued for rationally, but when they’re found 

to be in perfect agreement with the data, in hundreds of different 

types of collision, we become confident that they’re the sober truth. 

So a Bayesian rationalist looks to be in good shape with respect to 

scientific reasoning.  There are many a priori arguments in the 

history of science that are strongly intuitive (not yours, Descartes) 

and which agreed with the data – that was only observed later in 

many cases.  Moreover, the Bayesian method of reasoning requires 

only that a priori arguments render a hypothesis plausible, having 

a justified prior probability substantially different from zero, which 

seems a modest and realistic goal. 

On the other hand, the rationalist arguments in question do not 

appear to be ‘purely logical’ in character, like those of arithmetic 

for example.  Consider the case of equal bodies on a collision 

course at equal speed, so that the two bodies are mirror images of 
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each other.  It is a logical truth that one cannot infer an asymmetric 

state after the collision—symmetry absolutely must be conserved 

under logical consequence.  Yet the actual occurrence of a 

symmetric outcome cannot be inferred with certainty.  Such an 

inference requires all kinds of assumptions about the relation 

between conceptual things (ideas, propositions, probabilities, etc.) 

and concrete, physical things.  For example, we might use the 

principle that causes logically entail their effects, but is that 

principle itself a logical truth?  It doesn’t seem to be.  For one 

thing the notion of ‘cause’ is highly mysterious!  This principle is 

nothing like acknowledged logical truths, such as ‘a plane figure 

with 3 sides must have 3 angles’, which is conceptually clear and 

undeniable. 

The non-logical character of a priori arguments in physics is also 

illustrated by considering the question of whether space itself is 

‘isotropic’, which means that it is the same in all directions.  

(Woven cloth, for example, is not isotropic, as the warp threads are 

often different from the weft, and the cloth’s properties in diagonal 

directions will be different again.)  Now that the matter has been 

raised, we see that the symmetry arguments in the collision 

problem all assume the isotropy of space.  But surely the isotropy 

of space isn’t a logical truth either?  I assume that Leibniz would 

say that God could make a world in which space isn’t isotropic, but 

instead has a grain as cloth does.  And wouldn’t he be correct?  At 

best, we can infer isotropy only from the wisdom of God, his desire 

to make the best possible world, and so on.  It is doubtful whether 

life could exist in a non-isotropic world, for example, especially if 

it is to live on a rotating planet! 
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5.  Copernicus and the avoidance of ‘ad hocery’ 

Another example that illustrates the non-logical nature of a priori 

judgements is Copernicus’s main argument for a sun-centred 

universe.  The starting point of this argument is a very curious 

feature of Ptolemy’s earth-centred model.  (Note that this model 

had been the scientific orthodoxy for about 1,300 years).  

Ptolemy’s model, shown below, has all seven planets (the moon, 

Mercury, Venus, the sun, Mars, Jupiter and Saturn) orbiting the 

earth.  (The moon isn’t shown in the diagram.)  Apart from the sun 

and moon, all the planets move along ‘epicycles’, i.e. they orbit in 

a small circle around a point that itself orbits the earth.  That’s 

perhaps curious enough, but the really odd feature is that many of 

these circular motions are perfectly synchronised with each other, 

as shown by the yellow circles in the diagram. 
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The sun orbits right around the celestial sphere once per year, of 

course – that’s what defines a year.  Now, since Mercury and 

Venus never stray far from the sun, Ptolemy’s model fixes the 

centres of their epicycles so that they always lie on the earth-sun 

line, as shown.  With the superior planets, those above the sun, 

you’ll see that their epicycles are shown in yellow as well, since 

these orbits also take exactly one year, and the position of the 

planet on its epicycle exactly matches the sun’s position on its 

orbit.  Ptolemy was forced to construct the model this way by the 

observed fact that the superior planets undergo retrograde 

(backwards) motion when they’re in opposition to the sun. 

From a Ptolemaic perspective, there’s no apparent reason why so 

many orbits should be synchronised to the solar orbit.  This feature 

of the model is therefore said to be ad hoc, which means that it is 

there for the sole purpose (ad hoc = ‘for the purpose’) of making 

the model fit the empirical data.  A feature of a theory is ad hoc, in 

other words, to the extent that it is empirically driven rather than 

determined rationally. 

The Copernican model, as we all know, placed the sun at the centre 

of the universe, a made the earth a planet – the third rock from the 

sun, orbiting between Venus and Mars.  How did this explain the 

observed motions of the other planets?  Well, the fact that Venus 

and Mercury always appear close to the sun is explained rather 

simply by saying that they are actually close to the sun!  They dart 

around the sun, not the earth, and on very short leashes. 

Now, what about the odd phenomenon of ‘retrograde’ motion, 

where the superior planets sometimes stop their usual easterly 

motion in the heavens, go backwards (i.e. west) for a short while, 

and then continue east again?  And why does this always happen 

when they’re on the opposite side of the celestial sphere from the 
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sun?  According to Copernicus all the planets, including earth, 

orbit the sun in the same direction (eastward).  But the earth is 

moving faster than the three higher planets, being closer to the sun, 

and will overtake each of them sometimes.  Of course, during such 

overtaking events, the earth and (say) Mars are on the same side of 

the sun, so that from the earth’s perspective Mars is opposite the 

sun.  And as earth overtakes Mars, Mars appears to be going 

backwards, like a slow truck that you’re passing on the highway. 

In other words, the data that, for Ptolemy, require arbitrary, 

contingent features to be added to the model, are rationally 

necessary within that of Copernicus.  Build any universe you like, 

consisting of planets orbiting a star.  As long as you’re on one of 

the planets in the middle, some of the other planets will always 

appear to be close to the sun, and the others will move retrograde 

during opposition. 

It should be stressed that, empirically speaking, Copernicus’s 

model was no more accurate than Ptolemy’s.  The big advantage 

was that it was much less ad hoc.  Of course even Copernicus’s 

model was somewhat ad hoc, as all theories are.  No theory can be 

determined by reasoning alone!  For example, the speeds of the 

planets, and their orbital diameters, were ad hoc for Copernicus, 

among many other aspects.  Interestingly, later heliocentric models 

(e.g. due to Kepler, and then Newton) became progressively less 

ad hoc. 

I said above that this argument for heliocentrism provides a good 

illustration of how rationalistic arguments are not purely logical.  

Recall that Copernicus was a Catholic priest, and like all theists he 

was a creationist in the broad sense, i.e. he thought that the 

universe was engineered by a super-intellect, a master craftsman.  

Suppose that such a craftsman decided to build a universe 
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according to the Ptolemaic blueprint.  Would this be logically 

impossible?  Surely not – while getting the orbits all synchronised 

perfectly might pose technical challenges, even human 

clockmakers have overcome similar difficulties, so a divine 

watchmaker could certainly pull it off.  So why did Copernicus 

think that God didn’t in fact do that?  In De Revolutionibus, Book 

1, Chapter 10, Copernicus wrote that in making his model “We 
thus follow Nature, who producing nothing in vain or superfluous 
often prefers to endow one cause with many effects.”  In other 

words he believed that the creator, a wise engineer, would use the 

neatest, simplest, most economical mechanism available.  As with 

Leibniz, Copernicus’s a priori judgements were based on the 

wisdom of the creator, who never acts without a sufficient reason, 

rather than being based on logical necessity. 

 

6.  The thirst for rational explanation 

This inductive argument of Copernicus highlights an important 

element of scientific reasoning that we have not yet discussed.  

Science may be roughly characterised as the search for 

explanations of natural phenomena, i.e. the search for causes of 

what we observe.  In this vein, we might say that Copernicus 

exemplifies the key assumption of science that patterns and 

coincidences call for an explanation.  Rather than accept patterns 

(such as the six-fold repetition of the solar orbit) as ultimate facts, 

we should attempt to derive them from a single, simple cause. 

The method called “Inference to the best explanation” (IBE) is 

based on the prejudice (if you will) that there is a satisfying 

rational explanation for observed patterns.  IBE is therefore biased, 

right from the start, against ad hoc explanations, claims that the 
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pattern is due merely to chance, and so forth.  In this way, some 

philosophers, notably David Armstrong and Laurence BonJour, 

claim that inductive inferences are rationally justified in that they 

use the method of IBE.  When we see some patterns in nature, the 

best explanation of them is the proposed cause that predicts them 

with the fewest ad hoc assumptions. 

It is clear enough that invoking IBE in this way, to justify 

inductive inference, assumes that there is some a priori knowledge.  

How could we know, except a priori, that simpler explanations are 

more likely to be true (more on this question later). 

Copernicus’s inductive inference discussed above aims to uncover 

the real and objective structure of the universe from facts about 

how it appears from our perspective on earth.  Hume, on the other 

hand, considers inductive inferences that go from the past to the 

future.  Let us therefore consider the problem of predicting the 

future from a rationalist Bayesian perspective.   

The collision problem is a useful case to consider here, as collision 

laws can be used (together with observations of the present) to 

predict the future motions of particles.  The point to note here is 

that the collision law itself is a statement about the whole history of 

the particles: past, present and future.  Hence, if the collision law is 

probable (as a result of a priori arguments and supporting evidence) 

then it can be used to derive statements about the future that are 

also probable. 

In this way a rationalist Bayesian can also show that the sun will 

probably rise tomorrow.  From the wisdom of God we infer that 

physical space is symmetric under rotations (space is ‘isotropic’), 

and then the conservation of angular momentum follows by a 
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mathematical theorem proved by Emmy Noether1.  This law says 

that spinning bodies must continue to revolve at the same rate, 

unless acted upon by an external force.  Hence the earth will 

continue to rotate, and the sun will rise. 

 

7.  Empiricism and Inductive Inference 

Finally, let us consider inductive reasoning from the perspective of 

Bayesian empiricism.  I claimed in Section 4 that: 

(iii) If empiricism is true, then the priors cannot be justified at all. 

If this is true, then empiricism must lead to inductive scepticism.  

Without rationally justified prior probabilities, there is no rational 

method to infer theories from observations.  

Given that Bayesian empiricists cannot justify their prior 

probabilities by purely logical considerations, or by appeals to 

matters that could only be known a priori (such as the wisdom of 

God), the priors must be determined by experience.  But such 

empirically-determined priors seem impossible in principle, as the 

following argument shows. 

The argument involves what we might call Goodman laws,2 which 

are say things like, “Newton’s laws are followed up to Feb. 27, 

2023, but after that <some other law> holds”.  The difficulty posed 

by such laws is that they are flawless, from an empirical 

perspective, until the fateful moment of switchover.  They make all 

the right predictions until that point, so it seems that they can be 

 
1 Noether’s 1st theorem: Every differentiable symmetry of the action of a 
physical system with conservative forces has a corresponding conservation law. 
2 Named after Nelson Goodman, who introduced the idea of such non-uniform 
laws in order to discuss inductive inference. 
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dismissed as improbable only on a priori grounds (e.g., to 

paraphrase Einstein, “God would be making a big mistake” in 

creating such a law).  Yet if we assign the same prior probabilities 

to uniform laws as to their Goodman alternatives, inductive 

inference is impossible. 

Is this argument too quick, however?  Perhaps we can argue 

against Goodman laws on the empirical grounds that we have 

never found such a law to hold, in all our experience?  After all, 

astute readers may have noticed that, now and again, I’ve thrown 

in a little empirical argument for rationalist principles, as follows:  

1.  A priori arguments have often anticipated new data.   

2. If a priori arguments were mere sophistry and illusion 

then this empirical success would amount to a miracle. 

 ----------------- 

 A priori arguments are not illusions 

 

If this argument is successful, however, then perhaps these 

rationalistic principles no longer need a priori support, as the 

empirical support is now sufficient?  Early scientists were perhaps 

merely lucky that their preference for uniform laws (i.e. non-

Goodman laws) turned out well.  But hundreds of years later, after 

seeing that simple, uniform laws have a great track record of 

success, our preference for such laws has a strong empirical 

grounding, which is reflected in the prior probabilities we assign. 

Unfortunately, this response will not work.  Hume himself 

considered this response in a slightly different form, and showed 

the flaw in it.  Hume suggested an empirical argument that nature 

is uniform, based on the fact that it has been uniform in the past.  

Hume pointed out that the argument is circular, since to project 
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past uniformity into the future assumes the very uniformity in 

question.  From an empiricist’s perspective, the future (from right 

now) is a place that no one has ever observed, and so we can have 

no empirical knowledge of it.  To form beliefs about the future, 

based on observations about the past and present, would requires 

knowledge that the past and future are at least likely to be similar 

in certain respects.  But how could experience provide such 

knowledge, since our experience is entirely of the past and present? 

A Bayesian empiricist can offer one final argument, by appealing 

to a mathematical consequence of Bayes’ theorem which is called 

the ‘washing out of the priors’.  Here’s what the math says.  

Suppose there are two scientists, and two possible hypotheses, H1 

and H2.  One scientist initially favours H1 fairly strongly, while the 

other finds H2 much more plausible.  Thus, their priors are very 

different from each other, but let’s suppose that they both receive a 

piece of evidence that favours H1.  In that case, P(H1) will increase, 

and P(H2) will decrease, for both scientists, although their 

probabilities will still be different. 

If the evidence stream continues to favour H1, and both scientists 

update their probabilities according to Bayes’ theorem, then over 

time their posterior probabilities will essentially converge, i.e. the 

difference becomes insignificant.  The difference in their priors has 

now been “washed out” by the stream of data.  

This result shows that, in favourable cases where there is plenty of 

data that all parties can agree on, there is a reduced sensitivity to 

prior probabilities.  Does this show that inductive inference can 

occur, in the Bayesian framework, without rational prior 

probabilities? 


