Philosophy 1102

Answers to Problem Set 8

Total: 50 marks

1. (i) [3 marks]

	Boolean google	FO goggles
```\forallx ᄀTet(x) }->\mathrm{ ヨy Small(y) \negy Small(y) ----- \existsx Tet(x)```	$\begin{aligned} & P \rightarrow Q \\ & \neg Q \end{aligned}$ $\qquad$ $R$	
TT consequence?	No	
FO consequence?	Yes	
Logical consequence?	(Yes)	

Row of the truth table:

$P$	$Q$	$R$
$F$	$F$	$F$

(ii) [5 marks]

	Boolean googles		FO goggles
$\begin{aligned} & \forall x(\operatorname{Tet}(x) \rightarrow \operatorname{LeftOf}(x, a)) \\ & \text { Cube(b) } \wedge \operatorname{LeftOf}(a, b) \\ & \forall---- \\ & \forall y(\operatorname{Tet}(y) \rightarrow \operatorname{LeftOf}(y, b)) \end{aligned}$		$\begin{aligned} & A \\ & B \wedge C \\ & --- \\ & D \end{aligned}$	$\begin{aligned} & \forall x(P(x) \rightarrow Q(x, a)) \\ & R(b) \wedge Q(a, b) \\ & -\cdots y(P(y) \rightarrow Q(y, b)) \end{aligned}$
TT consequence?	No		
FO consequence?	No		
Logical consequence?	Yes		

Replace LeftOf with Adjoins. (N.B. Loves( $\mathrm{x}, \mathrm{y}$ ) would also work, or anything else that's not transitive.) Then the argument becomes:

(iii) [2 marks]

	Boolean googles	FO goggles
$\begin{aligned} & \neg(\text { Smaller }(a, b) \wedge \exists x \operatorname{Small}(x)) \\ & ---- \\ & \text { Smaller }(a, b) \rightarrow \neg \exists x \operatorname{Small}(x) \end{aligned}$	$\begin{aligned} & \neg(A \wedge B) \\ & --- \\ & A \rightarrow \neg B \end{aligned}$	$\begin{aligned} & \neg(P(a, b) \wedge \exists x Q(x)) \\ & --- \\ & P(a, b) \rightarrow \neg \exists x Q(x) \end{aligned}$
TT consequence?	Yes	
FO consequence?	(Yes)	
Logical consequence?	(Yes)	

(iv) [5 marks]

	Boolean google	FO goggles
$\begin{aligned} & \exists x \neg \text { Cube }(x) \rightarrow \text { Tet(c) } \\ & ----- \\ & \operatorname{Dodec}(c) \rightarrow \forall x \text { Cube(x) } \end{aligned}$	$\begin{aligned} & P \rightarrow Q \\ & --- \\ & R \rightarrow S \end{aligned}$	$\begin{aligned} & \exists x \neg P(x) \rightarrow Q(c) \\ & --\cdots(c) \rightarrow \forall x P(x) \end{aligned}$
TT consequence?	No	
FO consequence?	No	
Logical consequence?	Yes	

Replace Dodec with Large (or anything else that makes $Q(c)$ and $R(c)$ consistent).
Then the argument becomes:
Counter-example world:

$$
\begin{aligned}
& \exists x \neg \operatorname{Cube}(x) \rightarrow \operatorname{Tet}(c) \\
& \operatorname{Large}(c) \rightarrow \forall x \operatorname{Cube}(x)
\end{aligned}
$$


2. [2 marks each part]

		Logically necessary?	World
(i)	$\exists y(T e t(y) \vee C u b e(y)) \leftrightarrow(\exists y \operatorname{Tet}(\mathrm{y}) \vee \exists \mathrm{y}$ Cube $(\mathrm{y}))$	Yes	
(ii)	$\begin{array}{ll} \exists x(\text { Cube }(\mathrm{x}) \wedge \text { Large }(\mathrm{x})) & \leftrightarrow \\ F & \exists x(\text { Cube }(\mathrm{x}) \rightarrow \text { Large }(\mathrm{x})) \\ & \top \end{array}$	No	$\qquad$
(iii)	$\forall \mathrm{y}(\operatorname{Dodec}(\mathrm{y}) \wedge \operatorname{Large}(\mathrm{y})) \leftrightarrow(\forall \mathrm{y} \operatorname{Dodec}(\mathrm{y}) \wedge \forall \mathrm{L} \operatorname{Large}(\mathrm{y}))$	Yes	You need a non-cube, and no large cube.

3. [2 marks each, 14 total]

	1. $\forall x \forall y((S m a l l(x) \wedge$ Large $(y)) \rightarrow$ FrontOf $(x, y))$
T	2. $\exists \times \exists \mathrm{y}(\operatorname{Cube}(x) \wedge \operatorname{Tet}(\mathrm{y}) \wedge \operatorname{Larger}(\mathrm{x}, \mathrm{y})$ )
T	3. $\forall x \forall y(($ Cube $(x) \wedge$ Cube $(\mathrm{y})) \rightarrow$ SameCol $(x, y))$
T	4. $\neg \forall \times \forall y((\operatorname{Tet}(x) \wedge \operatorname{Tet}(\mathrm{y}) \mathrm{l}) \rightarrow$ SameColl $(x, y))$
T	5. $\forall x \forall y(($ Cube $(x) \wedge$ Cube $(y) \wedge x \neq y) \rightarrow \neg$ SameRow $(x, y))$
T	6. $\neg \forall \times \forall y((\operatorname{Tet}(\mathrm{x}) \wedge \operatorname{Tet}(\mathrm{y}) \wedge x \neq y) \rightarrow \neg$ SameRow $(x, y))$
	7. $\exists x \exists y(\operatorname{Tet}(x) \wedge \operatorname{Tet}(\mathrm{y}) \wedge x \neq y \wedge$ SameSize $(x, y))$

1. All the small blocks are in front of all the large blocks.
2. There's a cube that is larger than a tetrahedron.
3. All the cubes are in the same column.
4. The tetrahedra aren't all in the same column.
5. Every cube is in a different row from every other cube.
6. It's not the case that every tetrahedron is in a different row from every other tetrahedron.
7. There are different tetrahedra that are the same size.
4.(i) Fill out the satisfaction table below, using Adams' world. [4 marks] Then highlight or draw a ring around the truth value of the whole sentence, and try to see why the whole sentence has that truth value.) [1 mark]

$\mathrm{x}=$	$y=$	$\neg$	$\exists \mathrm{x}$	$\forall \mathrm{y}$	( $\mathrm{x} \neq \mathrm{y}$	$\rightarrow$	Adjoins( $\mathrm{x}, \mathrm{y})$ )
1	1	$F$	$T$	F	F	T	F
	2				T	F	F
	3				T	T	T
2	1			F	T	F	F
	2				F	T	F
	3				T	T	T
3	1			T	T	T	T
	2				T	T	T
	3				F	T	F



Adams' World


McGee's World
(ii) [1 mark each, 3 total]

1. $\forall \mathrm{y}(\mathrm{b} \neq \mathrm{y} \rightarrow \operatorname{Adjoins(b,y))}$	$\underline{\mathrm{b}}$ adjoins everything else
2. $\exists \mathrm{x} \forall \mathrm{y}(\mathrm{x} \neq \mathrm{y} \rightarrow \operatorname{Adjoins(x,y))}$	There is a thing that adjoins everything else
3. $\neg \exists \mathrm{x} \forall \mathrm{y}(\mathrm{x} \neq \mathrm{y} \rightarrow \operatorname{Adjoins}(\mathrm{x}, \mathrm{y}))$	Nothing adjoins everything else

Hint: $\forall x(\operatorname{InEnglish}(x)) \rightarrow \neg$ ContainsVariables(x) )
(iii) Do you now understand sentence 3? If so, then say whether the sentence is true or false in McGee's world above. [2 marks]

The sentence is true in McGee's World.
5. [1 mark for each correct object, total 5 marks]


	Sentence	Meaning
1.	$\forall x((x=a \vee x=d) \leftrightarrow \exists y \exists z$ Between $(x, y, z))$	$\underline{a}$ and $\underline{d}$ (and only $\underline{a}$ and $\underline{d})$ are between 2 things
2.	$e=c \leftrightarrow a=d$	(obvious)
3.	$\forall x(\neg \exists y \operatorname{Smaller}(y, x) \rightarrow(x=c \vee x=e))$	$\forall x($ nothing is smaller than $x \rightarrow(x=c \vee x=e))$
(c and e are the only smallest things)		

