Philosophy 1102

Answers to Problem Set 8

Total: 50 marks

1. (i) [3 marks]

	Boolean googles	FO goggles
$\forall x \neg Tet(x) \rightarrow \exists y Small(y) \neg \exists y Small(y) ====================================$	$\begin{array}{c} P \to Q \\ \neg Q \end{array}$	$\forall x \neg P(x) \rightarrow \exists y Q(y) $ $\neg \exists y Q(y)$
	R	$\exists x P(x)$
TT consequence?	No	
FO consequence?	Yes	
Logical consequence?	(Yes)	

Row of the truth table:

Р	Q	R
F	F	F

(ii) [5 marks]

	Boolean goo	ogles	FO goggles
$\forall x (Tet(x) \rightarrow LeftOf(x, a))$ Cube(b) $\land LeftOf(a, b)$ $\forall y (Tet(y) \rightarrow LeftOf(y, b))$	A B ∧ C D		$ \begin{array}{l} \forall x \ (P(x) \rightarrow Q(x, a)) \\ \hline R(b) \land Q(a, b) \\ \hline \\ \forall y \ (P(y) \rightarrow Q(y, b)) \end{array} \end{array} $
TT consequence?	No		
FO consequence?	No		
Logical consequence?	Yes		

Replace LeftOf with Adjoins. (N.B. Loves(x, y) would also work, or anything else that's not transitive.) Then the argument becomes:

(iii) [2 marks]

	Boolean googles	FO goggles
¬ (Smaller(a, b) ∧ ∃x Small(x)) Smaller(a, b) → ¬ ∃x Small(x)	$\neg (A \land B)$ $A \rightarrow \neg B$	$\neg (P(a, b) \land \exists x Q(x))$ $P(a, b) \rightarrow \neg \exists x Q(x)$
TT consequence?	Yes	
FO consequence?	(Yes)	
Logical consequence?	(Yes)	

(iv) [5 marks]

	Boolean goog	gles	FO goggles
$\exists x \neg Cube(x) \rightarrow Tet(c)$ Dodec(c) $\rightarrow \forall x Cube(x)$	$\begin{array}{c} P \to Q \\ \hline \\ R \to S \end{array}$		$\exists x \neg P(x) \rightarrow Q(c)$ $R(c) \rightarrow \forall x P(x)$
TT consequence?	No		
FO consequence?	No		
Logical consequence?	Yes		

Replace Dodec with Large (or anything else that makes Q(c) and R(c) consistent). Then the argument becomes:

 $\exists x \neg Cube(x) \rightarrow Tet(c)$ -----Large(c) $\rightarrow \forall x Cube(x)$ Counter-example world:

2. [2 marks each part]

		Logically necessary?	World
(i)	$\exists y(Tet(y) \lor Cube(y)) \leftrightarrow (\exists y Tet(y) \lor \exists y Cube(y))$	Yes	
(ii)	$\exists x (Cube(x) \land Large(x)) \leftrightarrow \exists x (Cube(x) \rightarrow Large(x))$ F T	No	<u>As</u> R
(iii)	$\forall y (Dodec(y) \land Large(y)) \leftrightarrow (\forall y Dodec(y) \land \forall y Large(y))$	Yes	You need a non-cube, and no large cube.

3. [2 marks each, 14 total]

T 1. \forall × \forall y ((Small(×) ∧ Large(y)) → FrontOf(×, y))	1. All the small blocks are in front of all the large blocks.
T 2. $\exists x \exists y (Cube(x) \land Tet(y) \land Larger(x, y))$	2. There's a cube that is larger than a
T 3. \forall × \forall y ((Cube(×) ∧ Cube(y)) → SameCol(×, y))	tetrahedron. 3 All the cubes are in the same
T 4. ¬∀× ∀y ((Tet(x) ∧ Tet(y)) → SameCol(x, y))	column.
T 5. \forall × \forall y ((Cube(×) ∧ Cube(y) ∧ ×≠y) → ¬SameRow(×, y))	4. The tetrahedra aren't all in the same column.
T 6. ¬∀× ∀y ((Tet(×) \land Tet(y) \land ×≠y) → ¬SameRow(×, y))	5. Every cube is in a different row from every <i>other</i> cube.
T 7. ∃x ∃y (Tet(x) ∧ Tet(y) ∧ x ≠ y ∧ SameSize(x, y))	6. It's not the case that every tetrahedron is in a different row from every <i>other</i> tetrahedron.
	7. There are <i>different</i> tetrahedra that are the same size.

4.(i) Fill out the satisfaction table below, using Adams' world. [4 marks] Then highlight or draw a ring around the truth value of the whole sentence, and try to see *why* the whole sentence has that truth value.) [1 mark]

x =	y =	Г	∃x	∀y	(x ≠ y	\rightarrow	Adjoins(x, y)))																			
	1					۴	Т	F																		
1	2			F					F	Т	F	F														
	3				Т	Т	Т																			
	1		Т	T F	TF	TF	TF	T F	T F										Т	F	F					
2	2	F								TF	F	Т	F													
	3														Т	Т	Т									
	1														ſ				1					Γ		
3	2 T	Т	Т	Т	Т																					
	3											F	Т	F												

Adams' World

McGee's World

(ii) [1 mark each, 3 total]

1. $\forall y (b \neq y \rightarrow Adjoins(b, y))$	<u>b</u> adjoins everything else
2. $\exists x \forall y (x \neq y \rightarrow Adjoins(x, y))$	There is a thing that adjoins everything else
3. $\neg \exists x \forall y (x \neq y \rightarrow Adjoins(x, y))$	Nothing adjoins everything else

Hint: $\forall x \text{ (InEnglish}(x)) \rightarrow \neg \text{ ContainsVariables}(x) \text{)}$

(iii) Do you now understand sentence 3? If so, then say whether the sentence is true or false in McGee's world above. [2 marks]

The sentence is true in McGee's World.

5. [1 mark for each correct object, total 5 marks]

	Sentence	Meaning
1.	$\forall x((x = a \lor x = d) \leftrightarrow \exists y \exists z \text{ Between}(x, y, z))$	\underline{a} and \underline{d} (and only \underline{a} and \underline{d}) are between 2 things
2.	$e = c \leftrightarrow a = d$	(obvious)
3.	$\forall x(\neg \exists y \text{ Smaller}(y, x) \rightarrow (x = c \lor x = e))$	$\forall x (nothing is smaller than x \rightarrow (x = c \lor x = e))$ (c and e are the only smallest things)
4.	∃x∃y∃z (BackOf(x, y) ∧ BackOf(y, z) ∧ BackOf(z, e))	There are ≥ 3 things back of <u>e</u> (in 3 different rows)
5.	$\forall x(x = b \rightarrow (Dodec(x) \land Larger(x, d)))$	Everything that's \underline{b} is a dodec larger than \underline{d} (I.e. \underline{b} is a dodec that is larger than \underline{d})
6.	$(f = b \lor f = c) \land \neg \exists x Between(x, b, f)$	(f = b \vee f = c) \wedge nothing is between <u>b</u> and <u>f</u>