Philosophy 1102

Instructor: Richard Johns

Problem Set 8

Hand in answers to the following questions during class on Thursday, March 14.

- Write out each argument below with Boolean goggles on, then again with FO goggles. Say 'yes' or 'no' to each question: Is it TT con? Is it FO con? Is it Logical con?
 [Note: Remember that TT con ⇒ FO con ⇒ logical con.] Then support your answers by doing what it says below. [15 marks total]
 - If the argument is **TT con** then no further work is needed.
 - If the argument is **FO con but not TT con** then show that it isn't TT con by giving a counter-example row of the truth table. (Keep the Boolean goggles on for this.)
 - If the argument is a **logical consequence, but neither FO con nor TT con** then: (a) *Replace the nonsense predicates* with new (meaningful) ones and
 - (b) *Draw a counter-example world* for your new argument (i.e. the argument created in part (a)).

(i)

	Boolean goog	gles	FO goggles
∀x ¬Tet(x) → ∃y Small(y) ¬∃y Small(y) ∃x Tet(x)			
TT consequence?			
FO consequence?			
Logical consequence?			

(ii)

	Boolean googl	es FO goggles
$\forall x (Tet(x) \rightarrow LeftOf(x, a))$ $Cube(b) \land LeftOf(a, b)$ $\forall y (Tet(y) \rightarrow LeftOf(y, b))$		
TT consequence?		
FO consequence?		
Logical consequence?		

(iii)

	Boolean goog	les	FO goggles
¬ (Smaller(a, b) ∧ $\exists x \text{ Small}(x)$) Smaller(a, b) → ¬ $\exists x \text{ Small}(x)$			
TT consequence?		· ·	
FO consequence?			
Logical consequence?			

(iv)

	Boolean goog	gles	FO goggles
$\exists x \neg Cube(x) \rightarrow Tet(c)$ Dodec(c) $\rightarrow \forall x Cube(x)$			
TT consequence?			
FO consequence?			
Logical consequence?			

- 2. For each of the following sentences,
 - (a) Say whether it is logically necessary or not, and
 - (b) (If it is logically necessary then you're done.) If it is *not* logically necessary, then draw a world where the biconditional is false (i.e. draw a *single* world in which the sentences on either side of the '↔' have different truth values). [2 marks each, 6 total]

		Logically necessary?	World
(i)	$\exists y(Tet(y) \lor Cube(y)) \leftrightarrow (\exists y Tet(y) \lor \exists y Cube(y))$		
(ii)	$\exists x (Cube(x) \land Large(x)) \leftrightarrow \exists x (Cube(x) \rightarrow Large(x))$		
(iii)	$\forall y (Dodec(y) \land Large(y)) \leftrightarrow (\forall y Dodec(y) \land \forall y Large(y))$		

3. Translate the sentences provided below into FOL. All the sentences are true in the world (Finsler's world) shown. Note that every answer should be either a double existential ∃x∃y, or a double universal ∀x∀y, or the negation of one of these sentence types.
[2 marks each, 14 total]

- 1. All the small blocks are in front of all the large blocks.
- 2. There's a cube that is larger than a tetrahedron.
- 3. All the cubes are in the same column.
- 4. The tetrahedra aren't all in the same column.
- 5. Every cube is in a different row from every *other* cube.
- 6. It's not the case that every tetrahedron is in a different row from every *other* tetrahedron.
- 7. There are *different* tetrahedra that are the same size.

[*Hint*: The italics in these sentences are a hint!]

- 4. The purpose of this question is to practice understanding a difficult sentence: $\neg \exists x \forall y (x \neq y \rightarrow Adjoins(x, y)).$
 - (i) Fill out the satisfaction table below, using Adams' world. [4 marks] Then highlight or draw a ring around the truth value of the whole sentence, and try to see *why* the whole sentence has that truth value.) [1 mark]

- McGee's World
- (ii) Another method is to translate the sentence into English gradually, "from the inside out". Notice sentences 1 and 2 below are gradually building up to the hard one (3). Translate all three sentences, *as simply as possible*, bearing in mind that your translations for 1 and 2 should each help you to translate the next sentence. [*Hint*: English sentences don't contain variables like 'x' and 'y'.] [1 mark each, 3 total]
 - 1. \forall y (b \neq y \rightarrow Adjoins(b, y))
 - 2. $\exists x \forall y (x \neq y \rightarrow Adjoins(x, y))$
 - 3. $\neg \exists x \forall y (x \neq y \rightarrow Adjoins(x, y))$
- (iii) Do you now understand sentence 3? If so, then say whether the sentence is true or false in McGee's world above. [2 marks]

5. Using the sentences provided, which are all true in the world shown, attach the names b, c, d, e and f to the objects in the world below. *Note that one object has two different names*. (You should also use the method from Qu. 4 of reading complex sentences like #3 from the inside out.) [1 mark for each correct object, total 5 marks]

	Sentence	Hint
1.	$\forall x((x = a \lor x = d) \leftrightarrow \exists y \exists z \text{ Between}(x, y, z))$	Tells you which one is <u>d</u>
2.	$e = c \leftrightarrow a = d$	Tells you whether or not $\underline{\mathbf{e}} = \underline{\mathbf{c}}$
3.	$\forall x(\neg \exists y \text{ Smaller}(y, x) \rightarrow (x = c \lor x = e))$	Tells you which two blocks are <u>c</u> and <u>e</u> , but not which is which.
4.	∃x∃y∃z (BackOf(x, y) ∧ BackOf(y, z) ∧ BackOf(z, e))	Tells you which one is <u>e</u> .
5.	$\forall x(x = b \rightarrow (Dodec(x) \land Larger(x, d)))$	Tells you which one is <u>b</u>
6.	$(f = b \lor f = c) \land \neg \exists x Between(x, b, f)$	Tells you which one is <u>f</u>