Philosophy 1102

Answers to Problem Set 7

Total: 50 marks

1. [1 mark each, 8 total]

		Wff?	Sentence?
(i)	$\forall a($ Medium $(a) \rightarrow$ Cube (a))	No	(No)
(ii)	$\operatorname{Larger}(\exists, b) \rightarrow \operatorname{Tet}(b)$	No	(No)
(iii)		Yes	Yes.
(iv)	Cube $(a) \rightarrow \operatorname{Tet}(x) \rightarrow$ Tet (y)	No	(No)
(v)	$\exists x(\operatorname{Dodec}(x) \wedge \text { Large(®) })$	Yes	No
(vi)	$\forall \mathrm{z}(\exists w \text { Large }(w) \rightarrow \operatorname{Cube}(z))$	Yes	Yes
(vii)	$\forall v \text { Cube(v) } \rightarrow \text { Large(v) }$	Yes	No
(viii)	$\forall x($ Large $(\operatorname{Cube}(x)) \rightarrow$ Small $(y))$	No	(No)

2. [2 marks each, 8 total]
(i) Negation Sentence [Question was: $\neg \exists x(\operatorname{Cube}(x) \wedge \forall y \operatorname{Larger}(x, y))]$

(ii) Conditional Sentence [Question was: $\forall x \neg \operatorname{Cube}(x) \rightarrow \neg \exists x \operatorname{Cube}(x)$]

(iii) Disjunction Sentence $\forall x(\operatorname{Dodec}(x) \rightarrow \operatorname{Small}(x)) \vee \exists x(\operatorname{Cube}(x) \wedge \operatorname{Medium}(x))$ [question below]

(iv) Universal Sentence $\quad \forall x(\operatorname{Cube}(x) \rightarrow \forall y(\operatorname{Dodec}(y) \rightarrow$ FrontOf $(x, y)))$ [question below]

3. For each sentence below, fill in the satisfaction table to determine whether the sentence is true or false in the world provided. [1 mark for each table +1 for each truth value $=6$ total]

(i) $\forall x(C u b e(x) \rightarrow x=a) \quad$ Truth value $\quad T \quad[1$ mark]

$x=$	$\forall x$	$($ Cube($x)$	\rightarrow	$(x=a$	v	$x=c))$
1	T	T	T	T	T	F
2		F	T	F	T	T

(ii) $\forall x(x=a \vee x=b) \quad$ Truth value $T \quad$ [1 mark]

$\mathrm{x}=$	$\forall \mathrm{x}$	$(\mathrm{x}=\mathrm{a}$	\vee	$\mathrm{x}=\mathrm{b})$
1	T	T	T	F
		F	T	T

(iii) $\exists x(\operatorname{Smaller}(x, a) \wedge x \neq b) \quad$ Truth value $F \quad$ [1 mark]

$\mathrm{x}=$	$\exists x$	(Smaller(x, a)	\wedge	$x \neq \mathrm{b}$)
1	F	F	F	T
2		T	F	F

4. [1 mark for each truth value, 8 total]

T 1. $\exists x(x \neq a \wedge x \neq b \wedge x \neq c \wedge x \neq d \wedge x \neq e)$
T 2. $\forall \mathrm{x}(\mathrm{x}=\mathrm{a} \rightarrow \mathrm{x}=\mathrm{d})$
F 3. $\exists x$ (Between $(x, c, a) \wedge x \neq b)$
T 4. $\forall x($ Between $(x, c, a) \rightarrow x=b)$
F 5. $\forall \mathrm{x}($ ($\operatorname{Tet}(\mathrm{x}) \wedge$ Medium $(\mathrm{x})) \rightarrow \mathrm{x}=\mathrm{e})$
T 6. $\forall \mathrm{x}(\mathrm{x}=\mathrm{e} \rightarrow(\operatorname{Tet}(\mathrm{x}) \wedge$ Medium $(\mathrm{x})) \mathrm{)})$
T 7. $\forall \mathrm{x}((\operatorname{Tet}(\mathrm{x}) \wedge$ Small $(\mathrm{x})) \leftrightarrow \mathrm{x}=\mathrm{b})$
T 8. $\exists \mathrm{y}(\mathrm{y} \neq \mathrm{e} \wedge$, $\operatorname{SameRow}(\mathrm{y}, \mathrm{e}))$

5. [5 marks for world]

$\frac{\text { T 1. } \exists \mathrm{x}(\operatorname{Tet}(\mathrm{x}) \wedge \operatorname{Large}(\mathrm{x}))}{\text { T 2. } \exists \mathrm{x}(\operatorname{Tet}(\mathrm{x}) \wedge \text { Medium }(\mathrm{x}))}$
T 3. $\exists \mathrm{x}(\operatorname{Cube}(\mathrm{x}) \wedge \neg \operatorname{Small}(\mathrm{x}))$
T 4. $\exists \mathrm{y}(\operatorname{Dodec}(\mathrm{y}) \wedge \neg \operatorname{Large}(\mathrm{y}))$
T 5. $\forall \mathrm{x}(\operatorname{Cube}(\mathrm{x}) \rightarrow$ Medium $(\mathrm{x}))$
T 6. $\forall \mathrm{xx}(\operatorname{Dodec}(\mathrm{x}) \rightarrow$ Small $(\mathrm{x}))$
T 7. $\forall \mathrm{x}(\operatorname{Tet}(\mathrm{x}) \rightarrow \neg \operatorname{Small}(\mathrm{x}))$
T 8. $\forall \mathrm{y}(\operatorname{Cube}(\mathrm{y}) \rightarrow \neg \operatorname{Tet}(\mathrm{y}))$

6. [1 mark each, 5 total]

1. All the tetrahedra are small. $\forall x(\operatorname{Tet}(x) \rightarrow \operatorname{Small}(x))$
2. Every large thing is a dodecahedron. $\forall y(\operatorname{Large}(y) \rightarrow \operatorname{Dodec}(y))$
3. Some dodecahedron is small. $\exists x(\operatorname{Dodec}(x) \wedge \operatorname{Small}(x))$
4. Some dodecahedron is neither large nor small. $\exists x(\operatorname{Dodec}(x) \wedge \neg \operatorname{Large}(x) \wedge \neg \operatorname{Small}(x))$
5. No tetrahedron is medium. $\neg \exists x(\operatorname{Tet}(x) \wedge \operatorname{Medium}(x))$

6. Translate the five sentences below into FOL. If correct, all five sentences will be true in the world from Question 6. [2 marks each]
7. Some small dodecs are in back of d .

$$
\exists x(\operatorname{Small}(x) \wedge \operatorname{Dodec}(x) \wedge \operatorname{BackOf}(x, d))
$$

2. Only dodecs are medium.

$$
\forall x(\operatorname{Medium}(x) \rightarrow \operatorname{Dodec}(x))
$$

3. Every tetrahedron is both left of and the same size as c.

$$
\forall x(\operatorname{Tet}(x) \rightarrow(\operatorname{LeftOf}(x, c) \wedge \operatorname{SameSize}(x, c)))
$$

4. No large dodec is in the same row as \underline{b}.

$$
\neg \exists x(\operatorname{Large}(x) \wedge \operatorname{Dodec}(x) \wedge \operatorname{SameRow}(x, b))
$$

5. Every dodec that's in the same row as a is medium.

$$
\forall x((\operatorname{Dodec}(x) \wedge \operatorname{SameRow}(x, a)) \rightarrow \operatorname{Medium}(x))
$$

