Philosophy 1102
Instructor: Richard Johns

Problem Set 10

Hand in your answers during class on Thursday, March 28.
[For these proofs, use only the rules provided in the handout "Rules of F^{+}".]

1. Show that the argument below is FO con by giving a formal proof. [6 marks]
```
\forallx Cube(x)
\forally Small(y)
\forallz(Small(z) ^Cube(z))
```

2. Show that the argument below is FO con by giving a formal proof. [6 marks]

$$
\begin{array}{|l}
\exists \exists \mathrm{y} \text { Cube }(\mathrm{y}) \vee \exists \mathrm{z} \text { Small(z) } \\
\hline \exists x(\text { Cube }(x) \vee \text { Small }(\mathrm{x}))
\end{array}
$$

3. Show that the argument below is FO con by giving a formal proof. [6 marks]

$$
\begin{aligned}
& \exists x \exists y(\text { Cube }(x) \wedge \text { Cube }(y) \wedge \neg \text { SameRow }(x, y)) \\
& \neg \forall x \forall y((C u b e(x) \wedge \text { Cube }(y)) \rightarrow \text { SameRow }(x, y))
\end{aligned}
$$

[N.B. you can eliminate the $\exists x$ and $\exists y$ quantifiers in one step if you like, since they're touching.]
4. Show that the argument below is FO con by giving a formal proof. [6 marks]

$$
\begin{aligned}
& \neg \exists \mathrm{xCube}(\mathrm{x}) \\
& \forall \mathrm{\forall x} \neg \text { Cube }(\mathrm{x})
\end{aligned}
$$

5. Show that the argument below is not FO con, by doing the following: [5 marks]
(a) Write the argument as it appears through FO goggles
(b) Provide a counter-example set of predicates to replace the nonsense predicates used in part (a), and
(c) Draw a counter-example world, for the new argument (with the new predicates)

$$
\begin{aligned}
& \exists x(\text { SameShape }(x, a) \wedge \text { Cube }(x)) \\
& \neg(\operatorname{Tet}(a) \vee \operatorname{Dodec}(a))
\end{aligned}
$$

6. By giving a formal proof, show that the argument in Qu. 5 becomes FO con when suitable shape axioms (see below) are added as premises. (Cite the axioms as 'A1', 'A2', etc.) [7 marks]

Shape Axioms

A1. $\neg \exists \mathrm{x}(\operatorname{Cube}(\mathrm{x}) \wedge \operatorname{Tet}(\mathrm{x}))$
A2. $\neg \exists \mathrm{x}(\operatorname{Tet}(\mathrm{x}) \wedge \operatorname{Dodec}(\mathrm{x}))$
A3. $\neg \exists \mathrm{x}(\operatorname{Dodec}(\mathrm{x}) \wedge \operatorname{Cube}(\mathrm{x}))$
A4. $\forall x(\operatorname{Tet}(x) \vee \operatorname{Dodec}(x) \vee \operatorname{Cube}(x))$
A5. $\forall \mathrm{x} \forall \mathrm{y}((\operatorname{Cube}(\mathrm{x}) \wedge \operatorname{Cube}(\mathrm{y})) \rightarrow \operatorname{SameShape}(\mathrm{x}, \mathrm{y}))$

A6. $\forall \mathrm{x} \forall \mathrm{y}((\operatorname{Dodec}(\mathrm{x}) \wedge \operatorname{Dodec}(\mathrm{y})) \rightarrow \operatorname{SameShape}(\mathrm{x}, \mathrm{y}))$
A7. $\forall x \forall y((\operatorname{Tet}(x) \wedge \operatorname{Tet}(y)) \rightarrow \operatorname{SameShape}(x, y))$
A8. $\forall \mathrm{x} \forall \mathrm{y}((\operatorname{SameShape}(\mathrm{x}, \mathrm{y}) \wedge \operatorname{Cube}(\mathrm{x})) \rightarrow \operatorname{Cube}(\mathrm{y}))$
A9. $\forall \mathrm{x} \forall \mathrm{y}((\operatorname{SameShape}(\mathrm{x}, \mathrm{y}) \wedge \operatorname{Dodec}(\mathrm{x})) \rightarrow \operatorname{Dodec}(\mathrm{y}))$
A10. $\forall \mathrm{x} \forall \mathrm{y}((\operatorname{SameShape}(\mathrm{x}, \mathrm{y}) \wedge \operatorname{Tet}(\mathrm{x})) \rightarrow \operatorname{Tet}(\mathrm{y}))$
7. Show that the argument below is FO con by giving a formal proof. [7 marks]

$$
\begin{array}{|l}
\exists x(\operatorname{Dog}(x) \wedge \operatorname{Lazy}(x)) \\
\forall x \forall y((\operatorname{Dog}(x) \wedge \operatorname{Dog}(y)) \rightarrow x=y) \\
\\
\exists x(\operatorname{Dog}(x) \wedge \forall y(\operatorname{Dog}(y) \rightarrow x=y) \wedge \operatorname{Lazy}(x))
\end{array}
$$

8. Show that the argument below is FO con by giving a formal proof. [7 marks]
[Make sure you understand what the first premise says. An important question then is: Does Celine love Celine?]
$\forall \mathrm{x}(\exists \mathrm{y} \operatorname{Loves}(x, y) \rightarrow \operatorname{Loves}(x$, celine $))$
Loves(celine, bill)
\neg Loves(alice, alice)
alice \neq celine
