Philosophy 1102 Introduction to Logic

Instructor: Richard Johns

Problem Set 7

Hand in answers to the following questions during class on Thursday, March 7.

1. For each of the strings of symbols below, say whether or not it is a *wff* of FOL, and whether or not it is a *sentence* of FOL. *Non-wffs require no further answer*. If it is a wff, however, then draw an arrow from each bound variable to the quantifier that binds it, and draw a ring around any free variables, as shown in the example below. [1 mark for each sentence = 8 total]

		wff?	sentence?
E.g.	$\forall x (\text{Cube}(y) \rightarrow \forall y \text{Larger}(x, y))$	Yes	No
(i)	$\forall c \ (Medium(c) \rightarrow Tet(a))$		
(ii)	Larger(\exists, b) \rightarrow Tet(b)		
(iii)	$\exists t \ (Dodec(t) \rightarrow Tet(t))$		
(iv)	$Cube(a) \rightarrow Tet(x) \rightarrow Tet(y)$		
(v)	$\exists x \ (Dodec(x) \land Large(y))$		
(vi)	$\forall z \ (\exists w \ Large(w) \rightarrow Cube(z))$		
(vii)	$\forall v \operatorname{Cube}(v) \rightarrow \operatorname{Large}(v)$		
(viii)	$\forall x \text{ (Large(Cube}(x)) \rightarrow \text{Small}(y))$		

2. (a) Translate each of the following FOL sentences into a circuit diagram, and translate each diagram into an FOL sentence. [1 mark each]

(b) Identify the *type* of each sentence (i.e. the main logical operator, which is either a connective or a quantifier). Thus the type of sentence may be 'universal', 'existential', 'conjunction', 'disjunction, 'negation', 'conditional, or 'biconditional'. [1 mark each]

(i)	– ∃x (Cube(x) ∧ ∀y Larger(x, y))	Diagram:
	Sentence type:	
(ii)	$\forall x \neg Cube(x) \rightarrow \neg \exists x Cube(x)$	Diagram:
	Sentence type:	_
(iii)	Dodec(x)	
	$\operatorname{Small}(x)$ \longrightarrow	$\forall x$
	Cube(x)	
	Medium(x)	
Sentend	ce:	Sentence type:
(iv)		
	Cube(x)	
	Dodec(y)	\rightarrow $\forall x$
	FrontOf(x, y)	
Sentend	ce:	Sentence type:

3. For each sentence below, fill in the satisfaction table to determine whether the sentence is true or false in the world provided. [1 mark for each table + 1 for each truth value = 6 total]

(i) $\forall x (Cube(x) \rightarrow (x = a \lor x = c))$ Truth value _____ [1 mark]

x =	∀x	(Cube(x)	\rightarrow	(x = a	V	x = c))
1						
2						

(i) $\forall x (x = a \lor x = b)$ Truth value _____ [1 mark]

x =	∀x	(x = a	~	x = b)
1				
2				

(iii) $\exists x (Smaller(x, a) \land x \neq b)$ Truth value _____ [1 mark]

x =	Я	(Smaller(x, a)	^	x≠b)
1				
2				

4. Evaluate each of the sentences below in the world provided. (I.e. just say whether each sentence is **T** or **F** in that world.) [1 mark for each truth value] [If you're unsure of an answer, you could create a satisfaction table – or imagine creating one.]

- 5. Draw a world in which Aristotle's sentences, given below, are all true. [5 marks]
 - 1. 3x (Tet(x) < Large(x))
 - 2. 3x (Tet(x) ~ Medium(x))
 - 3. $\exists x (Cube(x) \land \neg Small(x))$
 - 4. ∃y (Dodec(y) ∧ ¬Large(y))
 - 5. $\forall x (Cube(x) \rightarrow Medium(x))$
 - 6. $\forall x (Dodec(x) \rightarrow Small(x))$
 - 7. $\forall x (Tet(x) \rightarrow \neg Small(x))$
 - 8. $\forall y (Cube(y) \rightarrow \neg Tet(y))$

- 6. Translate the sentences below in FOL. (Every sentence is true in the world provided.) [1 mark each]
 - 1. All the tetrahedra are small.
 - 2. Every large thing is a dodecahedron.
 - 3. Some dodecahedron is small.
 - 4. Some dodecahedron is neither large nor small.
 - 5. No tetrahedron is medium.

- 7. Translate the five sentences below into FOL. If correct, all five sentences will be true in the world from Question 6. [2 marks each]
 - 1. Some small dodecs are in back of <u>d</u>.
 - 2. Only dodecs are medium.
 - 3. Every tetrahedron is both left of and the same size as <u>c</u>.
 - 4. No large dodec is in the same row as <u>b</u>.
 - 5. Every dodec that's in the same row as <u>a</u> is medium.