Instructor: Richard Johns

Problem Set 4

Hand in answers to the following questions in class on Thursday, February 1.

[7 marks for each proof, 4 marks for each truth-table row = 50 marks total]

Proofs are best done with your Boolean goggles on, so I suggest first writing #4 and #7 in Boolean form. For the first four questions, show that the argument is TT con by **providing a** *formal* **proof**. [*Hint*: The first two are *really* easy, needing only \land Elim, \land Intro and \lor Intro. Don't overthink them!]

1.

3.

For the remaining questions, first determine whether or not the argument is TT con. If it is, then show this with a *formal* proof. If it is not, then provide a counter-example row of its truth table. (For once, don't give a counter-example world.)

5.

Cube(a)
$$\vee$$
 Cube(b)
 \neg (Cube(c) \wedge Cube(b))
 \neg Cube(c)

$$\frac{|A \lor (B \land C)|}{(A \lor B) \land (A \lor C)}$$