Philosophy 1102
Introduction to Logic
Instructor: Richard Johns

Problem Set 2

Hand in answers to the following questions at the start of class on Thursday, Jan. 18.

1. If any of the following arguments is valid, provide a proof outline (see example).
[Your proof outline should insert two sentences as steps in between the premises and conclusion, as shown in the example below. Also write down the line numbers of the earlier statements used $-\mathbf{a}$ maximum of two - next to each step.]

If it isn't valid then draw a counterexample world. [4 marks each]

	argument	Proof outline
Example:	$\begin{aligned} & \mathrm{a}=\mathrm{b} \\ & \text { BackOf(b, c) } \\ & \text { SameRow(c, d) } \\ & ------ \\ & \text { FrontOf(d, a) } \end{aligned}$	1. $a=b$ 2. BackOf(b, c) 3. SameRow(c, d) \qquad 4. BackOf(a, c) $(1,2)$ 5. BackOf(a, d) $\quad(3,4)$ 6. FrontOf(d, a) (5)

Adjoins(a, b)	(ii)	Tet(b) v Cube(c)	(iii)	SameSize(b, c)
SameRow(c, b)		Tet(a)		$\operatorname{Tet}(\mathrm{c}) \wedge \operatorname{Tet}(\mathrm{b})$
LeftOf(a, c)		\neg SameShape (a, b)		SameRow(b, c)
---------		------		----
SameRow(a, c)		$\neg \operatorname{Dodec}(\mathrm{c})$		$b=c$

2. Show that the following argument is valid by providing a formal proof. (Fill in the lines 4, 5 and 6 , citing rules of inference, and fill in the rule for line 7.) [5 marks]

1	RightOf($a, c)$
2	$a=b$
3	$d=c$
4	
5	
6	
7	RightOf(b, d)

3. Translate each 'circuit diagram' below into a FOL sentence, and translate each FOL sentence into a 'circuit diagram'. [1 mark each, 6 total]

Also write down the type of each sentence, i.e. write "conjunction sentence', 'negation sentence', or 'disjunction sentence' as appropriate. (It's always the last operator applied.) [1 mark each, 6 total]
(i)

Sentence type \qquad
(ii)

Sentence type \qquad
(iii)

(iv)

(v) $\neg(P \vee Q) \wedge R$

Sentence type \qquad
(vi) $\neg(((P \vee Q) \wedge R) \vee S)$

Sentence type \qquad
4. For each of the following sentences, write ' T ' or ' F ' next to it, according to whether it is true or false in the world shown below. [Total 10 marks]
(Please do not use the program Tarski's World to generate your answers - figure it out yourself, perhaps using a circuit diagram. You may, however, use the program to check your answers.)

5. Draw a world in which all the sentences from Qu. 4 are true. (A couple of modifications to the world shown above will do it.) [5 marks for world]
6. Show that the following arguments are invalid, by drawing a counterexample world for each one. [3 marks each]
(i)

$$
\begin{aligned}
& \neg(\text { Large }(\mathrm{a}) \wedge \text { Large }(\mathrm{b})) \\
& \mid \neg \text { Large }(\mathrm{a}) \wedge \text { Large }(\mathrm{b})
\end{aligned}
$$

(ii)
$\mid \operatorname{Tet}(a) \vee(\operatorname{Tet}(b) \wedge \operatorname{Tet}(\mathrm{c}))$
$(\mathbf{T e t}(\mathrm{a}) \vee \operatorname{Tet}(\mathrm{b})) \wedge \operatorname{Tet}(\mathrm{c})$

