Philosophy 1102 Introduction to Logic

Instructor: Richard Johns

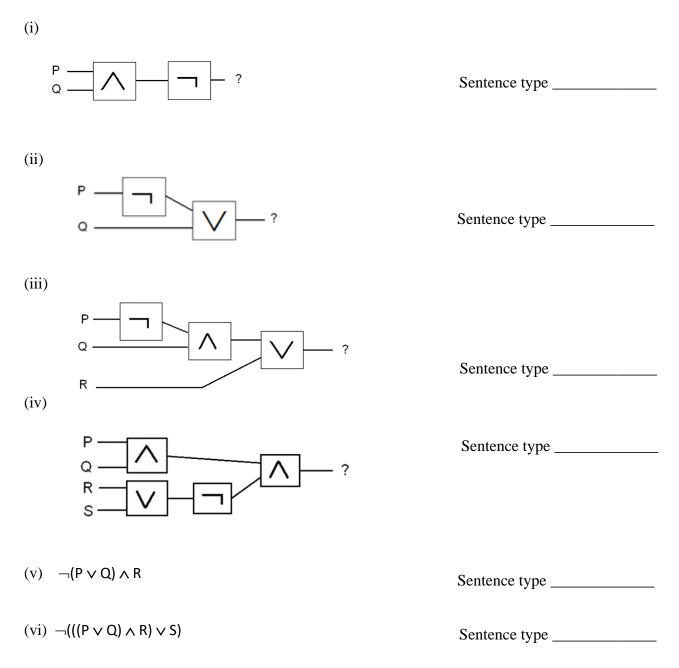
Problem Set 2

Hand in answers to the following questions at the start of class on Thursday, Jan. 18.

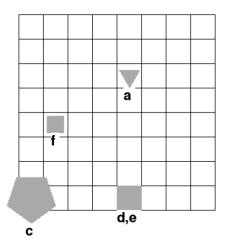
1. If any of the following arguments is valid, provide a *proof outline* (see example).

[Your proof outline should insert two sentences as *steps in between* the premises and conclusion, as shown in the example below. Also write down the line numbers of the earlier statements used -a **maximum of two** – next to each step.]

If it isn't valid then draw a *counterexample world*. [4 marks each]


		argument		Proof outline		
		a = b		1. a = b		
	Example:	BackOf(b, c)		2. BackOf(b, c)		
		SameRow(c, o	d)	3. SameRow(c,	d)	
		FrontOf(d, a)		4. BackOf(a, c)	.)	
				5. BackOf(a, d)	(3, 4)
				6. FrontOf(d, a	a) (5)	
(i)	Adjoins(a, b)	(;;)	Tot(h)	∨ Cube(c)	(;;;)	SameSize(b, c)
(i)	2	() ()		V Cube(c)	(iii)	
	SameRow(c, b)		Tet(a)		Tet(c) ∧ Tet(b)	
	LeftOf(a, c)		- Sam	eShape(a, b)		SameRow(b, c)
	SameRow(a, c)		- Dod	ec(c)		b = c

2. Show that the following argument is valid by providing a *formal* proof. (Fill in the lines 4, 5 and 6, citing rules of inference, and fill in the rule for line 7.) [5 marks]


RightOf(a, c)
a = b
d = c
4
5
6
7 RightOf(b, d)

3. Translate each 'circuit diagram' below into a FOL sentence, and translate each FOL sentence into a 'circuit diagram'. [1 mark each, 6 total]

Also write down the *type* of each sentence, i.e. write "conjunction sentence", 'negation sentence', or 'disjunction sentence' as appropriate. (It's always the last operator applied.) [1 mark each, 6 total]

- 4. For each of the following sentences, write 'T' or 'F' next to it, according to whether it is true or false in the world shown below. [Total 10 marks] (Please do not use the program Tarski's World to generate your answers figure it out yourself, perhaps using a circuit diagram. You may, however, use the program to *check* your answers.)
 - 1. $d \neq e$ (i.e. $\neg d \neq e$, the negation of d = e)
 - 2. Dodec(c) v Dodec(a)
 - Cube(d) ∧ Cube(e)
 - 4. \neg (Cube(d) \land Cube(f))
 - 5. ¬(Cube(a) v Cube(f))
 - 6. ¬(Small(a) ∧ ¬Small(f))
 - 7. Dodec(f) v ¬Medium(a) v Tet(e)
 - 8. \neg (Large(c) $\land \neg$ Medium(a)) $\lor \neg \neg$ Small(f)
 - 9. (SameSize(a, f) v SameSize(d, e) v Larger(c, f)) ^ ¬Larger(f, a)
 - 10. - Medium(d)

5. Draw a world in which *all* the sentences from Qu. 4 are true. (A couple of modifications to the world shown above will do it.) [5 marks for world]

6. Show that the following arguments are invalid, by drawing a counterexample world for each one. [3 marks each]

(i)
$$\neg$$
 (Large(a) \land Large(b)) (ii) $Tet(a) \lor (Tet(b) \land Tet(c))$
 \neg Large(a) \land Large(b) (Tet(a) $\lor Tet(b)) \land Tet(c)$