Boolean Goggles

Revealing the *form* of an FOL sentence

Boolean (TT) Goggles

(Unfortunately we are out of stock at present)

How they work

- Boolean goggles are used to reveal the Boolean form (= Boolean structure, pattern) of FOL sentences.
- The Boolean form of the sentence is clearly visible through the goggles
 - but everything else becomes fuzzy and illegible.

How they work

- The Boolean sentential operators ∧, ∨, ¬, → and ↔ are clearly visible through the goggles.
- Brackets '(' and ')' are also visible, if they're created by the Boolean operators.
- A special sentence \perp is visible.
- All other atomic sentences become fuzzy and unreadable
 - but you can see if two atomic sentences are exactly the same.

Tet(a) ∧ Tet(b)

• Through Boolean goggles you see:

Which we write as: $P \land Q$

 \wedge

(That's the 'Boolean form' of the sentence)

Dodec(a)

• Through Boolean goggles you see:

• E.g. $(Tet(a) \rightarrow \neg Cube(a)) \land Dodec(c)$

• Through Boolean goggles you see:

 $(\rightarrow \neg) \land$

Which we write as: $(P \rightarrow \neg Q) \land R$

Through B.G.:

Cube(a) ∨ ¬Small(a) Small(a) ∨ SameRow(a, c) FrontOf(a, c) ∨ ¬Large(a)

Cube(a) $\lor \neg$ Large(a)

 $\vee \neg$ V V-

Validity and TT goggles

Suppose you're looking at an argument with TT goggles on, and you see:

P ∨ Q ¬P -----

– Can you tell if it's a valid argument?

- Yes. The meanings of the sentences P and Q are *irrelevant* here.
- There are only 4 possible combinations of truth values for P and Q, namely TT, TF, FT and FF.
- None of these makes the premises true and the conclusion false.

- (Check with a truth table.)

- Hence there is no possible world in which the premises are true and the conclusion false.
 - Hence the argument is valid.

Ρ	Q	$P \lor Q$	P	Q
Т	Т			
Т	F			
F	Т			
F	F			

Ρ	Q	$P \lor Q$	P	Q
Т	Т	Т		
Т	F	Т		
F	Т	Т		
F	F	F		

Ρ	Q	$P \lor Q$	P	Q
Т	Т	Т	F	
Т	F	Т	F	
F	Т	Т	Т	
F	F	F	Т	

Ρ	Q	$P \lor Q$	P	Q
Т	Т	Т	F	Т
Т	F	Т	F	F
F	Т	Т	Т	Т
F	F	F	Т	F

Is there a counter-example (TT|F) world?

Is there a counter-example (TT|F) world?

• No. (So, the argument is valid)

• Hence we can test for logical consequence with a truth table.

 If a truth table has *no TT/F row* (no row with true premises and a false conclusion) then it must be a logical consequence.

 In fact, this is a special kind of logical consequence, called tautological (or TT) consequence. An argument that isn't TT consequence can still be a logical consequence.

TT consequence \Rightarrow logical consequence

But not vice-versa!

• Is this argument a logical consequence?

Actually yes.

But it isn't a TT consequence. For a TT con is a consequence that you can see through the TT goggles.

The actual argument is:

```
Cube(a)
a = b
-----
Cube(b)
```

Which arguments are TT con?

$$\neg$$
(Small(a) \lor Dodec(a))
 \neg Dodec(a)

| ¬(Cube(a) ∧ Large(a)) | Large(a) | ¬Cube(a)

Small(a) \lor Cube(a) Small(a) \neg Cube(a)

Larger(a, b) Larger(b, c) Larger(a, c)

Which arguments are TT con?

 \neg (Small(a) \lor Dodec(a)) \neg Dodec(a)

Yes, TT con

⊣(Cube(a) ∧ Large(a)) Large(a) ⊣Cube(a)

Yes, TT con

Small(a) \lor Cube(a) Small(a) \neg Cube(a)

No, not TT con (Not logical con either) Larger(a, b) Larger(b, c) Larger(a, c)

No, not TT con (but it is logical con)

Truth table for not TT con?

Small(a) \lor Cube(a) Small(a) ¬Cube(a)

	А	В	$A \lor B$	А	−B
*	Т	Т	Т	Т	F
	Т	F	Т	Т	Т
	F	Т	Т	F	F
	F	F	F	F	Т

Is there a TT | F row?

TT true (i.e. tautology)

• Consider the sentence $Tet(a) \lor \neg Tet(a)$.

It's a logical truth, since it's true in all possible worlds.

Through the TT goggles it becomes:

 $\vee \neg$ $P \vee \neg P$

It's true in every row of the TT, so it's TT true, i.e. **TT necessary**, i.e. a *tautology*.

- We know that 1+1=2. A world where was false would be absurd.
- Hence it is a logical truth (a.k.a. logical necessity)

Ρ

• But through the TT goggles we see only:

And so it isn't **TT necessary**.

