Boolean Goggles

Revealing the form of an FOL sentence

Boolean (TT) Goggles

(Unfortunately we are out of stock at present)

How they work

- Boolean goggles are used to reveal the Boolean form (= Boolean structure, pattern) of FOL sentences.
- The Boolean form of the sentence is clearly visible through the goggles
- but everything else becomes fuzzy and illegible.

How they work

- The Boolean sentential operators $\wedge, \vee, \neg, \rightarrow$ and \leftrightarrow are clearly visible through the goggles.
- Brackets '(' and ')' are also visible, if they're created by the Boolean operators.
- A special sentence \perp is visible.
- All other atomic sentences become fuzzy and unreadable
- but you can see if two atomic sentences are exactly the same.

E.g.

$\operatorname{Tet}(a) \wedge \operatorname{Tet}(b)$

- Through Boolean goggles you see:

Which we write as: $P \wedge Q$
(That's the 'Boolean form' of the sentence)

Tet(a) $\vee \operatorname{Dodec}(a)$

$\neg \operatorname{Tet}(\mathrm{a})$

Dodec(a)

- Through Boolean goggles you see:

- E.g. $\quad(\operatorname{Tet}(a) \rightarrow \neg \operatorname{Cube}(a)) \wedge \operatorname{Dodec}(c)$
- Through Boolean goggles you see:

Which we write as: $(P \rightarrow \neg Q) \wedge R$

Cube(a)
$\mathrm{a}=\mathrm{b}$

Cube(b)

P

Through B.G.:
Q

R

Cube(a) $\vee \neg$ Small(a)
Small(a) \vee SameRow (a, c)
FrontOf($a, c) \vee \neg$ Large (a)

Cube(a) $\vee \neg$ Large (a)

$A \vee \neg E$

Validity and TT goggles

- Suppose you're looking at an argument with TT goggles on, and you see:

- Can you tell if it's a valid argument?
- Yes. The meanings of the sentences P and Q are irrelevant here.
- There are only 4 possible combinations of truth values for P and Q, namely TT, TF, FT and FF.
- None of these makes the premises true and the conclusion false.
- (Check with a truth table.)
- Hence there is no possible world in which the premises are true and the conclusion false.
- Hence the argument is valid.

Truth table for the argument

P	Q	$\mathrm{P} \vee \mathrm{Q}$	$\neg \mathrm{P}$	Q
T	T			
T	F			
F	T			
F	F			

Truth table for the argument

P	Q	$\mathrm{P} \vee \mathrm{Q}$	$\neg \mathrm{P}$	Q
T	T	T		
T	F	T		
F	T	T		
F	F	F		

Truth table for the argument

P	Q	$\mathrm{P} \vee \mathrm{Q}$	$\neg \mathrm{P}$	Q
T	T	T	F	
T	F	T	F	
F	T	T	T	
F	F	F	T	

Truth table for the argument

P	Q	$\mathrm{P} \vee \mathrm{Q}$	$\neg \mathrm{P}$	Q
T	T	T	F	T
T	F	T	F	F
F	T	T	T	T
F	F	F	T	F

Truth table for the argument

P	Q	$\mathrm{P} \vee \mathrm{Q}$	$\neg \mathrm{P}$	Q
T	T	T	F	T
T	F	T	F	F
F	T	T	T	T
F	F	F	T	F

Is there a counter-example (TT|F) world?

Truth table for the argument

P	Q	$\mathrm{P} \vee \mathrm{Q}$	$\neg \mathrm{P}$	Q
T	T	T	F	T
T	F	T	F	F
F	T	T	T	T
F	F	F	T	F

Is there a counter-example (TT|F) world?

- No. (So, the argument is valid)
- Hence we can test for logical consequence with a truth table.
- If a truth table has no TT/F row (no row with true premises and a false conclusion) then it must be a logical consequence.
- In fact, this is a special kind of logical consequence, called tautological (or TT) consequence.

An argument that isn't TT consequence can still be a logical consequence.

TT consequence \Rightarrow logical consequence

But not vice-versa!

- Is this argument a logical consequence?

P
Q

R

Actually yes.
But it isn't a TT consequence. For a TT con is a consequence that you can see through the TT goggles.
The actual argument is:

Cube(a)
$a=b$

Cube(b)

Which arguments are TT con?

$\neg($ Small $(a) \vee \operatorname{Dodec}(a))$
\rightarrow Dodec(a)

$|$| $\neg($ Cube $(a) \wedge$ Large $(a))$ |
| :--- |
| Large (a) |
| |
| \neg Cube(a) |

Small(a) \vee Cube (a)
Small(a)

Larger(a, b)
Larger(b, c)
$\operatorname{Larger}(\mathrm{a}, \mathrm{c})$

Which arguments are TT con?

$\neg(\operatorname{Small}(\mathrm{a}) \vee \operatorname{Dodec}(\mathrm{a}))$
$\mid \neg \operatorname{Dodec}(\mathrm{a})$

Yes, TT con

$\neg($ Cube $(a) \wedge$ Large $(a))$
Large (a)

\neg Cube (a)

Yes, TT con

Small(a) \vee Cube(a)
Small(a)
\neg Cube(a)

No, not TT con
(Not logical con either)

Larger(a, b)
Larger (b, c)
$\operatorname{Larger}(\mathrm{a}, \mathrm{c})$

No, not TT con
(but it is logical con)

Truth table for not TT con?

Small(a) \vee Cube(a) Small(a)	Boolean Goggles:	$\mathrm{A} \vee B$ \neg Cube(a)
		$\neg B$

$* *$| A | B | $\mathrm{A} \vee \mathrm{B}$ | A | $\neg \mathrm{B}$ |
| :---: | :---: | :---: | :---: | :---: |
| T | T | T | T | F |
| T | F | T | T | T |
| F | T | T | F | F |
| F | F | F | F | T |

Is there a TT \| F row?

Yes!

TT true (i.e. tautology)

- Consider the sentence $\operatorname{Tet}(a) \vee \neg \operatorname{Tet}(a)$.

It's a logical truth, since it's true in all possible worlds.

Through the TT goggles it becomes:

It's true in every row of the TT, so it's TT true, i.e. TT necessary, i.e. a tautology.

- We know that $1+1=2$. A world where was false would be absurd.
- Hence it is a logical truth (a.k.a. logical necessity)
- But through the TT goggles we see only:

P

And so it isn't TT necessary.

