Elementary Proof in F＋that $\mathbf{1 + 1}=\mathbf{2}$

```
1. \existsx (F(x) & \forally (F(y) ->y=x))
2. \existsx (G(x) A \forally (G(y) ->y=x))
3. }\neg\existsx(F(x)&G(x)
4. 固\nabla F(a)^\forally (F(y)->y=a)
5. F(a)
6. \forally (F(y)->y=a)
    7. 回\nablaG(b) & \forally (G(y) ->y=b)
    8. G(b)
    9. }\forally(G(y)->y=b
    10. © | F(c) \veeG(c)
        11. \nabla F(c)
        12. F(c) }->\textrm{c}=\textrm{a
        13. c=a
        14.c=a \vee c=b
    15.}\nabla\textrm{G}(\textrm{c}
        16. G(c) }->\textrm{c}=\textrm{b
        17. c=b
        18. c=a \vee c=b
        19. c=a \vee c=b
        20.\forallz((F(z)\veeG(z))->(z=a\veez=b))
    21.\nablaa=b
    22. F(b)
    23.F(b) A G(b)
    24. \existsx (F(x) A G(x))
    25.1
    26. a = b
    27. F(b) \veeG(b)
    28.F(a) \veeG(a)
```



```
32. \existsx \existsy ((F(x)\veeG(x)) & (F(y)\veeG(y)) & x\not=y^\forallz ((F(z)\veeG(z))->(z=x\veez=y)))
    * * Elim: 4
    | A Elim: 4
    * \nablaV Elim: 6
    vilm: 15-18,11-14,
* \neg Intro: 21-25
* \vee v Intro: 8
* \nabla v Intro: 5
A Intro: 20,26,27,28
* \nabla ヨ Elim: 7-30,2
* \nabla ヨ Elim: 1,4-31
```

