
Some Basics on Logic and Probability 
 
Richard Johns, September 2006. 
 
 
1. Logical Relations 
 
Logic is concerned especially with certain relations between propositions, 
known as logical relations, the most important of which are consistency and 
entailment.  These are hard to define with precision, but the basic idea can be 
conveyed by the following. 
 
Definitions (i) Propositions A and B are consistent iff it is possible for them 

both to be true (together). 
 
 (ii) A entails B just in case, necessarily, if A is true then so is B. 
 
Some examples might help.  For someone knowledgeable about geography, the 
proposition that Alice was born in Coquitlam is consistent with her having been 
born in B.C., but inconsistent with the claim that she was born in Idaho.  The 
claim that Alice was born in Coquitlam is, however, logically consistent with the 
proposition that she grew up in Idaho.  Moreover, we note that if Alice was born 
in Coquitlam, then she must have been born in B.C., so that her being born in 
Coquitlam entails that she was born in B.C.  It does not entail, of course, that 
she grew up in Idaho, as she might have grown up somewhere else, such as in 
Lethbridge. 
 
Logical relations impose constraints on what it is proper to believe.  If A is 
inconsistent with B, for example, then it is not proper to believe both of them 
together.  Since they cannot both be true, and beliefs are supposed to be true, 
one should not believe them both.  It is foolish to believe that Alice was born in 
Coquitlam and also in Idaho.  If A entails B, then it is legitimate to proceed from 
belief that A holds to belief that B is also true.  Thus we sometimes describe the 
fact that A entails B by saying that B follows from A, or that B may be deduced, 
or inferred, from A.  For example, if one believes that x + 2 = 6, then one may 
proceed to the conclusion that x = 4. 
 
Definition If A entails B, then we shall say that A is stronger than B. 
 
Note that, since every proposition entails itself, this definition says that A is 
stonger than A.  Don’t worry about this.  Just think of “stronger than” as 
“stronger than or equal to”, just as we write “greater than” as “”.  If A is 
stronger than B, then A gives all the information that B gives, and possibly more 
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information on top of that.  Suppose you start off knowing that B is true.  If you 
later learn that A is true, your previous knowledge that B becomes redundant, as 
it is “contained” in the knowledge that A.  People sometimes say that the old 
knowledge that B is “screened off” by the new knowledge that A.  For example, 
the knowledge that Alice was born in B.C. is screened off, or made redundant, 
by the knowledge that she was born in Coquitlam. 
 
If A is stronger than B, then we shall say that B is weaker than A.  Note that, for 
most pairs of propositions, neither entails the other, and so neither is stronger (or 
weaker) than the other. 
 
During this section of the course it will be convenient to use some logical 
symbols.  We use upper-case, italic, Latin letters A, B, C, etc. to stand for 
propositions.  We then have the following abbreviations: 
 
 A entails B    A  B 
 It is not the case that A  A 
 Either A or B is the case (or both) AB 
 Both A and B are the case  A&B or AB 
 
If A entails B and B entails A as well, i.e. A  B and B  A, then we shall say 
that A and B are equivalent.  This will be written as A  B. 
 
For convenience, we define O as the “empty” proposition that says nothing, so 
that AO  A, and AO  O, for any A.  We can then define a logical truth, or 
logical necessity, as a proposition A such that O  A. 
 
 
2.  States of Knowledge 
 
The notion of a state of knowledge, or epistemic state, is very useful in 
understanding probability.  The reason for this is that the probability of an event 
or proposition depends on what knowledge you have.  If I learn that the 
Canucks’ opening game is against Detroit, then the probability that they will win 
is reduced (for me).  If I learn that they are playing the Calgary Flames, then a 
win is more likely. 
 
An epistemic state captures everything I know at a particular instant of time.  It 
includes not only the things (propositions) that I know for sure, but also things 
that I have a pretty good idea about.  For this reason, it is perhaps more 
accurately described as a state of rational belief rather than of knowledge.  
Consider, for instance, my knowledge of physics.  Most of the current theories 
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of physics, such a relativity, quantum mechanics and so forth, are uncertain, or 
fallible.  Future experiments may show that they need to be revised.  
Nonetheless, our knowledge of physics is still valuable and important, even 
though it is uncertain. 
 
One’s epistemic state changes with time, as one learns more about the world.  
The simplest kind of change is where one learns (for sure) that some proposition 
A is true, which one was previously unsure about.  This is a simple addition to, 
or expansion of, one’s knowledge.  Such an expansion occurs, for instance, 
when one performs an experiment for the first time.  Prior to the experiment one 
does not know what the result will be, but after the experiment one does know 
this, so that’s one’s knowledge is increased. 
 
We will need some more symbols to describe epistemic states.  In general, an 
epistemic state will be given some symbol based on ‘K’, for ‘Knowledge’, e.g. 
K, K’, and so on.  Using the concept of an epistemic state, we can think of 
propositions as “information vectors” that carry you from one state to a better 
one, in which you have more knowledge.  If one starts in the epistemic state K, 
and then learns that A is true, then one’s new state will be written K+A.  The 
idea of an epistemic state may seem strange at first, but it is very simple and 
should soon seem obvious. 
 
Suppose that, in the epistemic state K, you know for sure that all reptiles lay 
eggs.  The proposition A says that Clive is a reptile, and B says that Clive lays 
eggs.  Then A does not entail B, as one cannot infer B from A alone.  Within the 
epistemic state K, however, one can infer B from A, as one knows that all 
reptiles lay eggs.  Thus, although A does not entail B absolutely, the entailment 
does hold within K.  We can write this relation as A K B. 
 
It is a similar story for the other logical relations of consistency and equivalence.  
Two statements can be consistent in themselves, and yet be inconsistent within 
an epistemic state K.  For example, the statements “Clive is a reptile” and “Clive 
does not lay eggs” are consistent for a sufficiently ignorant person, but 
inconsistent within the state K above. 
 
If a proposition A is known for certain in K, then of course adding A to K will 
make no difference at all.  Thus the case where A is ‘contained’ in K, or 
absolutely certain in K, can be expressed as K+A = K. 
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3. Epistemic Probability 
 
We know that scientists are almost never able to prove their theories 
conclusively.  The best they can do is show that their theories are “probably” 
true, given all of the available evidence.  What do we mean by “probably” here? 
 
Well, the probability of a theory, in this sense, depends on the evidence 
available to you.  If two scientists are working with different sets of data, then a 
single theory might be likely according to one, and unlikely according to the 
other.  These probabilities are therefore subjective, in the sense that they can 
vary from one subject (person) to another.  Sometimes these probabilities are 
called “subjective probabilities”.  Other people call them “knowledge 
probabilities”, or “ignorance probabilities”, as they depend on one’s knowledge 
or ignorance.  Philosophers call them epistemic probability, as “epistemic” 
means “pertaining to knowledge”. 
 
One’s degree of belief in a proposition may vary with time, as one acquires 
knowledge.  For example, at the start of a one-mile race Fred looks tired and 
sluggish.  After the first lap he’s in last place, and there’s an expression of pain 
on his face.  At this point, as I watch from the stands, my epistemic probability 
for him winning is quite low, perhaps 0.01.  Then, half way through the race, he 
seems to be warming up.  He looks relaxed, his stride is more fluid, and he’s 
moved up to ninth place.  The probability of Fred winning is now much higher, 
perhaps 0.2.  At the bell, Fred is in third place, just behind the leaders, and looks 
as fresh as a daisy.  I’ve seen Fred run like this before, and am now pretty sure 
he’ll win.  The probability is now 0.95.  Unfortunately, just as he moves into 
first place, coming off the final bend, Fred trips over his laces and crashes to the 
ground.  His probability of winning is now effectively 0. 
 
In other words, a person’s epistemic probability for a proposition depends on his 
epistemic state.  If one’s epistemic state expands, as one acquires new 
information, then one’s epistemic probabilities can change.  Moreover, one’s 
epistemic probability should depend only on one’s epistemic state – nothing else 
should make a difference.  Owning shares in Philip Morris should not affect 
one’s degree of belief that smoking is harmful, for instance.  If two people are in 
the same epistemic state (which is rather unlikely) then they should have the 
same epistemic probabilities. 
 
Our notation for epistemic probability is then as follows: 
 
Definition PK(A) is the epistemic probability for A within the state K. 
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Epistemic probability is not the only kind of probability.  It is now (almost) 
generally agreed that there are two basic kinds of probability, which (although 
they are related) need to be kept quite separate.  Confusing these two kinds of 
probability is one of the most basic errors in this subject.  The second kind is 
called physical probability, or chance.  Fortunately the nature of physical 
probability doesn’t concern us here.  It’s rather mysterious, as it has exactly the 
same structure as epistemic probability, but it seems to exist objectively, in the 
physical world, independently of us humans.  
 
 
4.  How is Probability Measured? 
 
Length is (often) measured in metres, time is measured in seconds.  What is the 
unit of probability?  The unit of probability is a proposition that is absolutely 
certain, i.e. true beyond all doubt, such as ‘2 + 2 = 4’.  Such a proposition has 
probability 1 by definition, just as the platinum metre rod in Paris had a length 
of 1 metre.  Other propositions, that are less than certain, have lower 
probabilities, but how are actual values assigned? 
 
Various methods have been used to assign probabilities, but my favourite is to 
use the values of gambles.  Take a type of object that has value, say a loonie 
($1).  Let a gamble, [$1 if A], be a legal contract that will pay the owner $1 if a 
particular proposition A is true, but which is worth nothing if A is false. 
 
If A is absolutely certain, as certain as ‘2+2=4’, then intuitively the gamble [$1 if 
A] is worth exactly the same as $1 itself.  If A is less than certain, on the other 
hand, [$1 if A] is worth less than $1 in the sense that you would prefer to have 
$1 over [$1 if A]. 
 
Consider, for example, that a fair coin is to be tossed once, and heads says that 
the coin will land heads.  How much is [$1 if heads] worth?  Intuitively it should 
be worth the same as [$1 if tails], since the coin is fair.  But what is a fair price 
for buying both gambles together, i.e. the bundle {[$1 if heads], [$1 if tails]}?  
The fair price is surely $1, since the bundle will pay exactly $1 no matter how 
the coin lands – excluding edge as a possibility!  Notice then that we have 
created two other objects, of equal value, which together are worth $1.  Such 
objects can be defined as having value $0.5. 
 
To cut a long story short, a value scale can be created in this way using any 
object of value, and once this is done the (epistemic) probability of a proposition 
can be defined as the value of a gamble involving that proposition. 
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Definition PK(A) = the fair price of [$1 if A], for someone in epistemic state K. 

 
 
 
5.  The Axioms of Probability 
 
We saw in Section 1 that logic imposes some constraints on belief – if A and B 
are inconsistent, for example, then one should not believe both.  In this section 
we shall find that logic also imposes constraints on degrees of belief, i.e. 
epistemic probabilities.  These constraints are called the axioms of probability.  
There are four axioms, the first three of which are known as the Kolmogorov 
axioms, after the famous Russian mathematician A. N. Kolmogorov. 
 
Axiom 1 PK(A)  0, for all epistemic states K. 

 
Axiom 2 If K+A = K, then PK(A) = 1. 

 
Axiom 3 If A is inconsistent with B then PK(AB) = PK(A) + PK(B). 

 
Axiom 1 is clear from the fact that possessing the gamble [$1 if A] cannot cost 
you anything, and so canno be worth less than $0.  Axiom 2 is just as 
straightforward.  If A is known for sure within K, then having the contract [$1 if 
A] is no different from having $1.  Axiom 3 is more tricky, but may be 
demonstrated as follows.  If A is inconsistent with B, then the two contracts [$1 
if A] and [$1 if B] cannot both yield money, as in that case both A and B would 
be true.  It follows that having both contracts together is equivalent to having 
just the single contract [$1 if AB].  (In each case, you get $1 if either A or B is 
true.)  Now, the value of two separate contracts is the sum of the values of each 
one, so that Axiom 3 must hold. 
 
The fourth axiom is the most interesting.  Since it involves what is called 
conditional probability, we shall first define this. 
 
Definition PK(AB), which we read as “the probability of A given B”, is 

PK+B(A). 

 
In other words, the probability of A given B is the probability of A in an 
expanded epistemic state, in which (100% certain) knowledge of B has been 
added.  Conditional probability enables us to measure the impact of new 
evidence upon the credibility of a scientific theory.  If the old probability of a 
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hypothesis H was PK(H), then upon receipt of new evidence E our epistemic 

state becomes K+E, and so the new probability of H is PK+E(H), i.e. PK(HE). 

 
The fourth axiom relates conditional probability to normal probabilities, as 
follows. 
 

Axiom 4 If PK(B)  0, then 
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Axiom 4 is also known as the ‘Principle of Conditionalisation’.  Sometimes it is 
taken to be the definition of conditional probability, but this is a mistake.  It 
requires demonstration, although the proof is tricky and is not included here. 
 
It should be noted that probabilistic reasoning, like all reasoning, is not simply a 
matter of following rules.  The axioms, though useful, do not by themselves get 
us very far.  Reasoning is an art, and involves intuition, skill and good judgment.  
In particular, reasoning involves making judgments about symmetry and 
irrelevance, according to the following principles.  It should be noted that these 
principles are not further axioms, since the notions of symmetry and irrelevance 
cannot be rigorously defined.  They are guidelines.  One learns to use them 
properly through practice. 
 
Symmetry Principle If A and B are symmetric within K, then PK(A) = PK(B). 

 
Irrelevance Principle If A is irrelevant to B within K, i.e. A provides no 

information (relative to K) about whether or not B might 
be true, then PK(BA) = PK(B). 

 
 
6.  Examples 
 
Suppose we know that a coin is lying on a table top, but don’t know which face 
is showing.  What is the probability that it is heads?  Let K be our knowledge 
here.  Since the coin is symmetric with respect to its two faces, heads and tails, 
we have that PK(heads) = PK(tails), by symmetry.  Also, since heads and tails 

are inconsistent (they cannot both be true), Axiom 3 tells us that  
PK(heads  tails) = PK(heads) + PK(tails).  Finally, since we know (within K) 

that  (heads  tails) is true, Axiom 2 tells us that PK(heads  tails) = 1.  (We 

sometimes describe this by saying that heads and tails are jointly exhaustive, 
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within K.  Together, they exhaust all the possibilities that K allows.)  We then 
have: 
 
 PK(heads) + PK(tails) = 1 

 
 Thus, PK(heads) + PK(heads) = 1 

 
 So PK(heads) = 1/2. 

 
It might seem like a lot of work for such an obvious result!  It is important to 
understand the logical basis of such facts, however.  More generally, if there are 
n alternatives A1, A2, ..., An, that are pairwise inconsistent, pairwise symmetric, 

and jointly “exhaustive” (i.e. one of them has to be true), then each alternative 
has probability 1/n, i.e. PK(Ai) = 1/n, for every i. 

 
Applying this to the case of a six-sided die resting on a table, we find that the 
probability of each face being the upper face is 1/6.  If the faces are numbered 1 
to 6, then what is the probability of getting an even number?  Let the random 
variable X represent the score on the die.  Using Axiom 3 we get: 
 
 PK(X is even)  = PK(X=2  X=4  X=6) 

   = PK(X=2) + PK(X=4) + PK(X=6) 

   = 1/6 + 1/6 + 1/6 
   = 1/2. 
 
Suppose we find out that the score is even.  Within this new epistemic state, 
what is the probability of X=2?  Intuitively one feels that it should be 1/3, since 
there are 3 possible values that are even.  Let us check this, using Axiom 4. 
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5.  Useful Theorems 
 
1.  PK(A) = 1  PK(A). 

 
2.  If K + A = K (i.e. A is surely false in K) then PK(A) = 0. 

 
3.  If A K B, then PK(A) = PK(B). 

 
4.  If A K B, then PK(A)  PK(B). (Note that stronger statements are less 

probable!) 
 
5.  0  PK(A)  1. 

 
6.  PK(A & B) = PK(A) × PK(BA).  (This is the general product rule.) 

 
7.  If A and B are mutually irrelevant within K, then PK(A & B) = PK(A) × 

PK(B).  (This is the product rule for independent propositions.) 

 
8.  PK(A  B) = PK(A) + PK(B)  PK(A & B) 

 
(This rule always holds, regardless of whether or not A and B are inconsistent 
within K.) 
 
9.  If PK(A) = 1, then PK(A | B) = 1 as well, provided that PK(B) exists and is > 0. 
 

10.  Bayes’s theorem: .
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11.  The theorems of total probability: 
 

Let O K (A1  A2  ...  An), so that the propositions A1, A2, ..., An are 

jointly exhaustive in K, and also let Ai K Aj for ij, so that the Ai are 

pairwise inconsistent in K, then  
 
1.  PK(B) = PK(B & A1) + PK(B & A2) + ... + PK(B & An). 

 
2.  PK(B) = PK(B | A1)PK(A1) +  PK(B | A2)PK(A2) + ... +  PK(B | An)PK(An). 


