Philosophy 220A, Section 001 Symbolic Logic I

ANSWERS TO THE FAKE MIDTERM

1. (i) Assuming *b* is large and *c* isn't, *b* is larger than *c*.

 $(Large(b) \land \neg Large(c)) \rightarrow Larger(b, c)$

(ii) Unless a is small, it is the same size as c just in case c isn't a tetrahedron.

$$\neg$$
Small(a) \rightarrow (SameSize(a,c) $\leftrightarrow \neg$ Tet(c))

(iii) (Cube(a) \leftrightarrow Small(a)) \land (Tet(a) \rightarrow Medium(a))

a is a cube just in case it is small, and a tetrahedron only if it's medium.

2. [Total of 15 marks]

Larger(a, b) \lor Cube(c) a = b \neg Tet(c)

- (i) Is the argument above logically valid? <u>Yes</u> (Yes/ No)
- (ii) Is the argument above TT valid? (I.e. is the conclusion a *tautological* consequence of the premisses?)

<u>No</u> (Yes/ No)

(iii) If the answer to either question above is *No*, then demonstrate that this answer is correct by providing a world, or assignment of truth values to atomic sentences, as appropriate. (Write your answer in the space below.)

Larger(a, b)	Cube(c)	a=b	Tet(c)
Τ	\mathbf{F}	Τ	Т

(There are other assignments of truth values for which the premisses are all true, and the conclusion is false.)

3. Use a truth table to determine whether or not the following sentences are tautologically (TT) equivalent.

$$(\mathbb{P} \land \neg \mathbb{Q}) \to \mathbb{R} \qquad \neg \mathbb{R} \to (\neg \mathbb{Q} \to \neg \mathbb{P})$$

				E
Р	Q	R	$(\mathbb{P} \land \neg \mathbb{Q}) \to \mathbb{R}$	$\neg R \rightarrow (\neg Q \rightarrow \neg P)$
Т	Т	Т	Т	Т
Т	Т	F	Т	Т
Т	F	Т	Т	Т
Т	F	F	F	F
F	Т	Т	Т	Т
F	Т	F	Т	Т
F	F	Т	Т	Т
F	F	F	Т	Т

[12 marks for the table]

Answer:	<u>They are TT equivalent</u>	[2 marks]
---------	-------------------------------	-----------

4.

Medium(a) $\lor (\neg \text{Tet}(a) \rightarrow \text{Small}(a))$ SameShape(a, b) Smaller(b, a) $\lor (\text{Cube}(a) \land \text{Dodec}(b))$ Small(b)

N.B. This is the only solution, if we restrict ourselves to Tarski's World worlds. Without that restriction (which is not stated in the question) there are other correct solutions.

a (large Tet)

b (medium Tet)

5. For each of the following arguments, prove that the argument is valid by providing a formal proof (in \mathcal{F}) of the conclusion from the premises. [8, 9, 10, 11 marks]

(i)

1. (C v G) → (A ∧ B)	
2. 🔻 C	
3. C v G	🖌 🔝 v Intro: 2
4. A A B	✓ ▼ → Elim: 1,3
5. A	🖌 🔽 🛪 Elim: 4
6. C \rightarrow A	✓ ▼ → Intro: 2-5

(ii)

1. (D ∧ E) → ¬F 2. F ∨ (G ∧ W)	
3. D → E	
4. 🔻 D	
5. E	✓ ▼ → Elim: 3,4
6. D ^ E	🖌 🤝 A Intro: 5,4
7. ¬F	✓ ▼ → Elim: 6,1
8. ▼ F	
9. L	🖌 🤝 🛨 Intro: 8,7
10. G	🖌 🗢 ⊥ Elim: 9
11. ▼ G∧W	
12. G	🗸 🗢 A Elim: 11
13. G	🖌 🗢 v Elim: 8-10,11-12,2
14. D \rightarrow G	✓ ▼ → Intro: 4-13

(iii) Note how in this proof we start by assuming D, not $\neg A$, as this shortens the proof a little. Premiss 1 tells us that getting $\neg D$ is as good as getting A. Moreover, if you look at premiss 2, you see that the assumption of D is very useful. Knowing $\neg A$ is less useful.

1. A⇔⊐D	
2. (D v H) \rightarrow B	
3. ¬(B ∨ G)	
4. 🕶 D	
5. D v H	🖌 🔝 v Intro: 4
6. B	✓ ▼ → Elim: 2,5
7. B v G	🧹 🔝 v Intro: 6
8. ⊥	🖌 🗢 ⊥ Intro: 7,3
9. ¬D	🖌 🗢 🤉 Intro: 4-8
10. A	✓ ▼ ↔ Elim: 1,9