Symbolic Logic I

ANSWERS TO THE FAKE MIDTERM

1. (i) Assuming b is large and c isn't, b is larger than c.
(Large(b) $\wedge \neg \operatorname{Large}(\mathbf{c})) \rightarrow \operatorname{Larger}(\mathrm{b}, \mathrm{c})$
(ii) Unless a is small, it is the same size as c just in case c isn't a tetrahedron.
\neg Small $(\mathrm{a}) \rightarrow$ (SameSize $(\mathrm{a}, \mathrm{c}) \leftrightarrow \neg$ Tet(c))
(iii) $(\operatorname{Cube}(a) \leftrightarrow \operatorname{Small}(a)) \wedge(\operatorname{Tet}(a) \rightarrow \operatorname{Medium}(a))$
a is a cube just in case it is small, and a tetrahedron only if it's medium.
2. [Total of 15 marks]

$$
\left.\begin{array}{|l}
\operatorname{Larger}(a, b) \vee \operatorname{Cube}(c) \\
a=b
\end{array}\right)
$$

(i) Is the argument above logically valid? \qquad (Yes/ No)
(ii) Is the argument above TT valid? (I.e. is the conclusion a tautological consequence of the premisses?)
\qquad (Yes/ No)
(iii) If the answer to either question above is No, then demonstrate that this answer is correct by providing a world, or assignment of truth values to atomic sentences, as appropriate. (Write your answer in the space below.)
Larger(a, b)
T
Cube(c)
F
$\mathbf{a}=\mathrm{b}$
T
Tet(c)
T
(There are other assignments of truth values for which the premisses are all true, and the conclusion is false.)
3. Use a truth table to determine whether or not the following sentences are tautologically (TT) equivalent.

$$
(\mathrm{P} \wedge \neg \mathrm{Q}) \rightarrow \mathrm{R} \quad \neg \mathrm{R} \rightarrow(\neg \mathrm{Q} \rightarrow \neg \mathrm{P})
$$

[12 marks for the table]

P	Q	R	$(\mathrm{P} \wedge \neg \mathrm{Q}) \rightarrow \mathrm{R}$	$\neg \mathrm{R} \rightarrow(\neg \mathrm{Q} \rightarrow$ $\neg \mathrm{P})$
T	T	T	T	T
T	T	F	T	T
T	F	T	T	T
T	F	F	F	F
F	T	T	T	T
F	T	F	T	T
F	F	T	T	T
F	F	F	T	T

Answer: \qquad
\qquad [2 marks]
4.

```
Medium(a)}\vee(\neg\operatorname{Tet(a)}->\mathrm{ Small(a))
SameShape(a, b)
Smaller(b, a)\vee (Cube(a) ^ Dodec(b))
Small(b)
```

N.B. This is the only solution, if we restrict ourselves to Tarski's World worlds. Without that restriction (which is not stated in the question) there are other correct solutions.

a (large Tet)

b (medium Tet)
5. For each of the following arguments, prove that the argument is valid by providing a formal proof (in \mathcal{F}) of the conclusion from the premises. [8, 9, 10, 11 marks]
(i)

1. $(C \cup G) \rightarrow(A \cap B)$
2. $\nabla \mathrm{C}$
3. CvG $\quad \nabla$ vintro: 2
4. AคB $\quad \forall \nabla \rightarrow$ Elim: 1,3
5. A

- ∇ a Elim: 4

6. $\mathrm{C} \rightarrow \mathrm{A} \quad \forall \nabla \rightarrow$ Intro: 2-5
(ii)
```
1. \((\mathrm{D} \wedge \mathrm{E}) \rightarrow \neg \mathrm{F}\)
2. \(F v(G \cap W)\)
3. \(D \rightarrow E\)
4. \(\nabla \mathrm{D}\)
5. E \(\quad \nabla \rightarrow\) Elim: 3,4
6. \(\mathrm{D} \wedge \mathrm{E} \quad \forall \nabla\) A Intro: 5,4
7 ᄀF
    8. \(\nabla \mathrm{F}\)
    9. 1
    10. G
    11. \(\nabla \mathrm{GAW}\)
    12. G \(\forall \quad\) A Elim: 11
13. G \(\downarrow v\) Elim: 8-10,11-12.2
14. \(\mathrm{D} \rightarrow \mathrm{G}\)
```

(iii) Note how in this proof we start by assuming D , not $\neg \mathrm{A}$, as this shortens the proof a little. Premiss 1 tells us that getting $\neg \mathrm{D}$ is as good as getting A. Moreover, if you look at premiss 2, you see that the assumption of D is very useful. Knowing $\neg \mathrm{A}$ is less useful.

```
1. A}\leftrightarrow\neg
2. (D\cupH)}->\textrm{B
3. }\neg(\textrm{B}\cupG
    4.}\nabla\textrm{D
    5. DvH \ \nablavintro: 4
    6.B 
    7. 日\cupG \checkmark 
    8. }
9. ᄀD \ \nabla ᄀIntro: 4-8
10.A 
```

