ANSWERS TO FAKE FINAL EXAMINATION

1. (i) $P \wedge Q$
$\mathrm{R} \rightarrow \mathrm{S}$
(ii)
$P \quad Q \quad R \quad S$
$P \wedge Q$
$\mathrm{R} \rightarrow \mathrm{S}$
T T T F
T
F

Not TT con. In this row, the premise is true but the conclusion is false.
(iii)
$\exists \mathrm{y} \operatorname{Trat}(\mathrm{y}) \wedge \forall \mathrm{z}(\operatorname{Trat}(\mathrm{z}) \rightarrow \forall \mathrm{w} \operatorname{Lig}(\mathrm{w}))$
$\operatorname{Crub}(\mathrm{a}) \rightarrow \operatorname{Lig}(\mathrm{a})$
(iv) It is FO con, so we do a proof.

```
1. \existsy Trat(y) & \forallz (Trat(z) }->\mathrm{ *w Lig(w))
    2. \nabla Crub(a)
    3. \existsy Trat(y) \ | * A Elim: 1
    4. \forallz (Trat(z) -> \forallw Lig(w)) * * A Elim: 1
    5. 回\nablaTrat(b)
        6. Trat(b) }->\mathrm{ Vw Lig(w) < (w % V Elim: 4
        7.\forallwLig(w) | | G Elim: 5,6
        8.Lig(a) \checkmark \nabla\forall Elim:7
    9. Lig(a) \checkmark \nablaヨ Elim: 5-8,3
10. Crub(a) }->\mathrm{ Lig(a) (a)
```

2.

(i) The mother of Conrad is smaller than him. [2]

Smaller(mother(conrad), conrad)
(ii) Only large cubes are left of b. [2]
$\forall x(\operatorname{LeftOf}(x, b) \rightarrow(\operatorname{Large}(x) \wedge \operatorname{Cube}(x)))$
(iii) $\forall z(\operatorname{LeftOf}(z$, a) $\leftrightarrow \operatorname{BackOf}(z, \mathrm{~b}))$ [2]

The same things are left of a as are back of b.
(A thing is left of a if and only if it's back of b.)
(iv) $\exists w(\operatorname{Tet}(w) \wedge \operatorname{Smaller}(w, \mathrm{c}) \wedge \forall x((\operatorname{Tet}(x) \wedge \operatorname{Smaller}(x, \mathrm{c})) \rightarrow x=w) \wedge \operatorname{SameCol}(w, \mathrm{~d})) \quad[2]$ The tet that is smaller than c is in the same column as d .
(v) The smallest cube is in back of b. [2]
$\exists \mathrm{x}(\operatorname{Cube}(\mathrm{x}) \wedge \forall \mathrm{y}((\operatorname{Cube}(\mathrm{y}) \wedge \mathrm{x} \neq \mathrm{y}) \rightarrow \operatorname{Smaller}(\mathrm{x}, \mathrm{y})) \wedge \operatorname{BackOf}(\mathrm{x}, \mathrm{b}))$
(vi) If a tetrahedron has any cube to the left of it, then it (the tetrahedron) is large. [3] $\forall \mathrm{x} \forall \mathrm{y}((\operatorname{Tet}(\mathrm{x}) \wedge \operatorname{Cube}(\mathrm{y}) \wedge \operatorname{LeftOf}(\mathrm{y}, \mathrm{x})) \rightarrow \operatorname{Large}(\mathrm{x}))$
or: $\forall \mathrm{x}((\operatorname{Tet}(\mathrm{x}) \wedge \exists \mathrm{y}(\operatorname{Cube}(\mathrm{y}) \wedge \operatorname{LeftOf}(\mathrm{y}, \mathrm{x}))) \rightarrow \operatorname{Large}(\mathrm{x}))$
[Note that these are equivalent.]
(vii) $\neg \exists x \exists y \exists z(y \neq z \wedge \operatorname{Between}(x, y, z) \wedge \operatorname{SameShape}(y, z))$ [3]

Nothing is between two things that are the same shape.
(viii) Cube $(\mathrm{a}) \wedge \forall \mathrm{y}(\operatorname{Cube}(\mathrm{y}) \rightarrow \mathrm{y}=\mathrm{a}) \wedge \operatorname{Large}(\mathrm{a})$ [3]
a is the only cube and it's large.
(ix) $\exists x(\operatorname{BackOf}(x, \mathrm{~b}) \wedge \exists y \exists z(y \neq z \wedge \operatorname{BackOf}(y, x) \wedge \operatorname{BackOf}(z, x))$ [3]

There are two things back of something that is back of b.
(x) $\forall x(\operatorname{Loves}(x$, conrad) $\rightarrow(x=\operatorname{conrad} \vee x=$ mother(conrad) $))$ [3]

No one, other than Conrad himself and his mother, loves Conrad.
3.

$$
\begin{aligned}
& \text { 1. } \neg(D \wedge \neg B) \\
& \text { 2. }(A \wedge E) \rightarrow B \\
& \text { 3. } A \rightarrow(D \vee E) \\
& \text { 4. } \nabla \mathrm{A} \\
& \text { 5. D } \vee \mathrm{E} \quad \checkmark \rightarrow \operatorname{Elim} 4,3 \\
& \text { 6. } \nabla D \\
& \text { 7. } \nabla-B \\
& \text { 8. } D \wedge \neg B \quad \text { ィ Intro } 6,7 \\
& \text { 9. } \perp \\
& \text {, } \perp \text { Intro 1,8 } \\
& \text { 10. B } \quad \checkmark \text { - Intro } \quad 7.9 \\
& \text { 11. } \nabla \mathrm{E} \\
& \text { 12. } \mathrm{A} \wedge \mathrm{E} \quad \checkmark \wedge \text { Intro } 4,11 \\
& \text { 13. B } \quad \forall \rightarrow \text { Elim 2,12 } \\
& \text { 14. B } \quad \checkmark \quad \operatorname{Elim}{ }_{5,6-10,11-13} \\
& \text { 15. } \mathrm{A} \rightarrow \mathrm{~B} \quad \checkmark \rightarrow \text { Intro } \quad 4.14
\end{aligned}
$$

4. (i) Is the conclusion of the following argument a logical consequence of the premisses? (Assume that the predicates have their usual meanings.) [2 marks]

Yes.

$$
\begin{aligned}
& \forall x(\operatorname{Cube}(x) \rightarrow \operatorname{Adjoins}(x, \text { a) }) \\
& \text { Cube(b) }
\end{aligned}
$$

(ii)
$\forall \mathrm{x}(\mathrm{Cabb}(\mathrm{x}) \rightarrow \mathrm{Ajjo}(\mathrm{x}, \mathrm{a}))$
Cabb(b)
Ajjo(a, b)
(iii)

Not a FO consequence. Let $\operatorname{Cabb}(x)$ mean $\operatorname{Cube}(x)$, and $\operatorname{Ajjo}(x, y)$ means $\operatorname{LeftOf}(x, y)$. Then here's a counterexample world:

T 1. $\forall x($ Cube $(x) \rightarrow \operatorname{LeftOf}(x, a))$
T 2. Cube(b)
F 3. LeftOf(a, b)
5.
a.

```
1. \forall'x (Cube(x) }->\mathrm{ Large(x))
2. \existsx (Adjoins(x, b) & Large(x)) & \existsx (Adjoins(x, b) A ᄀLarge(x))
    3. \nabla\forallx (Adjoins(x, b) }->\mathrm{ Cube(x))
    4. \existsx (Adjoins(x, b) ^ \negLarge(x))
    5. 园\nabla Adjoins(a, b) ^ ᄀLarge(a)
    6. Cube(a) }->\mathrm{ Large(a)
    7. ᄀLarge(a)
    8. ᄀCube(a)
    9. Adjoins(a,b)
    10. Adjoins(a, b) }->\mathrm{ Cube(a)
    11. Cube(a)
    12. 1
    13. 1
14. ᄀ\forall`x(Adjoins(x, b) -> Cube(x))
```

```
\(\checkmark \nabla\) Elim: 1
```

$\checkmark \nabla$ Elim: 1

* $\nabla_{\text {a Elim: }} 5$
* $\nabla_{\text {a Elim: }} 5$
, ∇ MT: 6,7
, ∇ MT: 6,7
- $\nabla_{\text {A Elim: }} 5$
- $\nabla_{\text {A Elim: }} 5$
, ∇ V Elim: 3
, ∇ V Elim: 3
, $\nabla \rightarrow$ Elim: 9,10
, $\nabla \rightarrow$ Elim: 9,10
* $\nabla \perp$ Intro: 8,11
* $\nabla \perp$ Intro: 8,11
$\checkmark \nabla$ Elim: 5-12,4
$\checkmark \nabla$ Elim: 5-12,4
* $\nabla \neg$ Intro: 3-13

```
* \(\nabla \neg\) Intro: 3-13
```

b．

```
1. \(\exists x(\operatorname{Boy}(x)\) A \(\forall y(\operatorname{Girl}(y) \rightarrow \operatorname{Likes}(y, x)))\)
2. \(\forall y \forall z(L i k e s(y, z) \rightarrow\) Likes(z, y))
    3. 固 \(\nabla\) Girl(a)
    4. 回 \(\nabla\) Boy (b) \(\times \forall y(\operatorname{Girl}(\mathrm{y}) \rightarrow \operatorname{Likes}(y, \mathrm{~b}))\)
    5. Boy(b)
    6. \(\forall y(\operatorname{Girl}(y) \rightarrow\) Likes \((y, b))\)
    7. Girl(a) \(\rightarrow\) Likes(a, b)
    8. Likes(a, b)
    9. \(\forall z(\) Likes \((a, z) \rightarrow\) Likes \((z, a))\)
    10. Likes(a, b) \(\rightarrow\) Likes(b, a)
    11. Likes(b, a)
    12. ヨz Likes(z, a)
    13. \(\exists z\) Likes( \(z, ~ a)\)
```



```
* \(\nabla_{\text {a Elim: }} 4\)
```

* $\nabla_{\text {a Elim: }} 4$
- $\nabla_{\text {A Elim: }} 4$
- $\nabla_{\text {A Elim: }} 4$
- ∇ も Elim: 6
- ∇ も Elim: 6
人 $\nabla \rightarrow$ Elim: 3,7
人 $\nabla \rightarrow$ Elim: 3,7
- ∇ ह Elim: 2
- ∇ ह Elim: 2
* ∇ b Elim: 9
* ∇ b Elim: 9
人 $\nabla \rightarrow$ Elim: 8,10
人 $\nabla \rightarrow$ Elim: 8,10
人 ∇ ヨ Intro: 11
人 ∇ ヨ Intro: 11
* ∇ ヨ Elim: 4-12,1
* ∇ ヨ Elim: 4-12,1
* ∇ VIntro: 3-13
* ∇ VIntro: 3-13
c．

```
```

1. \existsx (Cube(x) \& \forally (Cube(y) ->x=y) \& Large(x))
2. -Large(a)
3. \nabla Cube(a)
4. 回\nablaCube(b) \& \forally (Cube(y) ->b=y) ^ Large(b)
5. Cube(b)
6. \forally (Cube(y) }->\textrm{b}=\mp@code{y)
7. Cube(a) }->\textrm{b}=\textrm{a
8.b = a
9. Large(b)
10. Large(a)
11.1
12. 1
3. ᄀCube(a)
$\checkmark \nabla$ a Elim: 4
$\checkmark \nabla$ a Elim: 4

- ∇ A Elim: 4
- ∇ A Elim: 4
* ∇ E Elim: 6
* ∇ E Elim: 6
$\checkmark \nabla \rightarrow$ Elim: 7,3
$\checkmark \nabla \rightarrow$ Elim: 7,3
$\checkmark \nabla$ A Elim: 4
$\checkmark \nabla$ A Elim: 4
$\checkmark \nabla=$ Elim: 8,9
$\checkmark \nabla=$ Elim: 8,9
, $\nabla \perp$ Intro: 2,10
, $\nabla \perp$ Intro: 2,10
* ∇ ヨ Elim: 1,4-11
* ∇ ヨ Elim: 1,4-11
* $\nabla \neg$ Intro: 3-12

```
* \(\nabla \neg\) Intro: 3-12
```


6.

Note that I＇ve entered the axioms A2，A5，A6 and A7 as premises，in order to cite them in Fitch． You don＇t have to write them out，however．

```
1. a = b
2. \forallx (Tet(x) v Dodec(x) v Cube(x))
3. }\forallx\forallyy((Tet(x) & Tet(y)) -> SameShape(x,y)
4. }\forallx\forally((\operatorname{Dodec}(x) & Dodec(y)) -> SameShape(x,y)
5. \forallx\forally ((Cube(x) & Cube(y)) -> SameShape(x, y))
6. Tet(a) v Dodec(a) v Cube(a) , \vee v Elim: 2
    7. }\nabla\operatorname{Tet(a)
8. Tet(b)
9. (Tet(a) & Tet(b)) }->\mathrm{ SameShape(a, b )
10. Tet(a) & Tet(b)
11. SameShape(a, b)
12. \nabla Dodec(a)
13. Dodec(b)
14. Dodec(a) & Dodec(b)
15. (Dodec(a) & Dodec(b)) }->\mathrm{ SameShape(a,b)
16. SameShape(a, b)
17. \nabla Cube(a)
18. Cube(b)
19. Cube(a) & Cube(b)
20. (Cube(a) & Cube(b)) }->\mathrm{ SameShape(a, b)
21.SameShape(a, b)
v \nabla= Elim: 12,1
| & Intro: 12,13
v \nabla = Elim: 15,14
= Elim: 17,1
\ & Intro: 17,18
* \ Elim: 5
| | Elim: 19,20
22. SameShape(a, b)
| \vee Elim: 6,7-11,12-16
```

7.

(i) $\forall \mathrm{x} \forall \mathrm{y}((\operatorname{Tet}(\mathrm{x}) \wedge \operatorname{Cube}(\mathrm{y}) \wedge \operatorname{Adjoins}(\mathrm{x}, \mathrm{y})) \rightarrow \operatorname{Larger}(\mathrm{x}, \mathrm{y}))$
$\exists \mathrm{y}(\operatorname{Cube}(\mathrm{y}) \wedge \forall \mathrm{x}((\operatorname{Tet}(\mathrm{x}) \wedge \operatorname{Adjoins}(\mathrm{x}, \mathrm{y})) \rightarrow \operatorname{Larger}(\mathrm{x}, \mathrm{y})))$
(ii)

\top 1. $\forall y \forall x((\operatorname{Tet}(x) \wedge \operatorname{Cube}(y) \wedge \operatorname{Adjoins}(x, y)) \rightarrow \operatorname{Larger}(x, y))$
F 2. $\exists \mathrm{y}(\operatorname{Cube}(\mathrm{y}) \wedge \forall x((\operatorname{Tet}(x) \wedge \operatorname{Adjoins}(x, y)) \rightarrow \operatorname{Larger}(x, y)))$

$F \quad$ 1. $\forall y \forall x((\operatorname{Tet}(x) \wedge \operatorname{Cube}(y) \wedge$ Adjoins $(x, y)) \rightarrow \operatorname{Larger}(x, y))$
\top 2. $\exists \mathrm{y}(\operatorname{Cube}(\mathrm{y}) \wedge \forall x((\operatorname{Tet}(x) \wedge \operatorname{Adjoins}(x, y)) \rightarrow \operatorname{Larger}(x, y)))$
(iii) The sentence "All politicians are not corrupt" is also ambiguous. Write down two (nonequivalent) translations of it into FOL, using the predicates Politician (x) and $\operatorname{Corrupt}(x)$. [5 marks]
$\forall \mathrm{x}(\operatorname{Politician}(\mathrm{x}) \rightarrow \neg \operatorname{Corrupt}(\mathrm{x}))$
$\neg \forall \mathrm{x}($ Politician $(\mathrm{x}) \rightarrow \operatorname{Corrupt}(\mathrm{x}))$

