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Abstract: The Principle of Indifference, which dictates that we ought to assign two outcomes equal
probability in the absence of known reasons to do otherwise, is vulnerable to well-known objections.
Nevertheless, the appeal of the principle, and of symmetry-based assignments of equal probability, persists.
We show that, relative to a given class of symmetries satisfying certain properties, we are justified in calling
certain outcomes equally probable, and more generally, in defining what we call relative probabilities.
Relative probabilities are useful in providing a generalized approach to conditionalization.  The technique is
illustrated by application to simple examples.
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1. Introduction.  A recent statement of the classical Principle of Indifference (PI) runs as
follows:

If there are n mutually exclusive possibilities h1, …, hn, and e gives no more reason to
believe any one of these more likely to be true than any other, then P(hi / e) is the same
for all i.1

In the absence of any known reason to assign two outcomes different probabilities, they ought
to be assigned the same probability.

The Principle is generally attributed to Laplace, who spoke of cases as “equally
possible” for us when there is “nothing to make us believe that one case should occur rather
than any other.”2  One objective of this paper is to make sense of the quaint notion of “equi-
possibility” as distinct from equal probability.3  The Laplacian formulation is of more than
historical interest.

PI is most frequently applied on the basis of an appeal to symmetries among the
possible outcomes.  A coin of unknown origin appears symmetrical, so we should assign equal
probability to either face’s coming up when the coin is tossed.  A six-sided die appears
symmetrical, so each face has probability 1 in 6 of landing uppermost.

Symmetry-based applications raise two well-known types of concern.  First, there is an
epistemological worry:  the relevant symmetries between possible outcomes may be merely
apparent.  The die might actually be weighted so that 6 comes up with disproportionate

                                                
1 Howson and Urbach [1993], 52.  The Principle of Indifference is also commonly referred to as the Principle
of Insufficient Reason.
2 See Laplace [1902], VII, 181.
3 See Hacking [1975] for a discussion of Laplace’s definition.
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frequency.  The concern here is that our epistemic probability for a certain event might not agree
with its actual physical probability, or chance.  In this paper, that concern will not be relevant
because we shall not address the issue of applications of PI to physical probability.4  We
confine our discussion to epistemic probability, because symmetry arguments occur most
naturally in that context.  We do not usually talk about real physical symmetries, but symmetries
in some model or representation of the space of possible outcomes.

Second, there is a logical worry:  different ways of describing the outcome space might
yield different classes of symmetries that generate inconsistent probability assignments.
Notoriously, this situation occurs in the Bertrand Paradox, in which three distinct symmetry-
based arguments can be given to support three different answers to the question:  what is the
probability that a needle dropped on a unit circle will determine a chord of length greater than or

equal to 3 ?5

Despite the paradoxes, the appeal of symmetry arguments and the Principle of
Indifference persists.  Such arguments are of great importance in assigning prior probabilities.
Although we do not directly confront the problem of paradoxes in this paper, we believe that
they can be avoided by a careful formulation of epistemic symmetry.  In this paper our aim is
more modest:  we take a suitable set of symmetries as given, and impose conditions that ensure
that no conflicting probability assignments can arise in the examples we discuss.  In general, we
do not endorse the idea that mere ignorance justifies the application of PI.  Symmetry between
possible outcomes, within a state of knowledge, is a very special case of ignorance, and it is
only in such cases that PI can be applied.

These symmetries sometimes define not just a relation of equi-possibility, but also a
generalization to what we call relative probabilities.  Relative probabilities provide a natural
definition of conditional probability that agrees with the ordinary one in normal cases, but also
extends to cases where symmetry arguments appear to justify conditionalizing on outcomes that
have probability zero or, indeed, have no well-defined probability.  The technique has two main
advantages over other approaches to this type of conditionalization:  it is mathematically quite
simple, and it involves no arbitrary assumptions.

2.  Examples.  To support our view about the importance of symmetry arguments and PI,
consider the following examples:

Example 2.1 (The dartboard):

You are throwing a dart at a square board that measures one meter by one meter.
Suppose that the point of the dart is equally likely to hit any point on the board.  Since
the entire board has unit area, the probability that the dart will land in a specified region
is just its area, if that area is well-defined.  In particular, any two regions of equal area
are equally likely to contain the point where the dart hits.

                                                
4For a recent discussion, see Strevens [1998].
5 Bertrand [1889].
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Now consider the proposition M that the dart lands on a given horizontal line crossing
the dartboard, as shown.  There is zero probability that a dart will land exactly along this
line:  Pr(M) = 0.  But nothing prevents us from raising the question:  what is the
conditional probability of L, the dart’s landing on the left half of M, given that it lands on
M?  Intuitively, and by appealing to the symmetry of the left and right halves, the answer
is ½.  Yet Pr(L / M) cannot be obtained from the usual definition of conditional
probability, Pr(L / M) = Pr(L ⋅ M) / Pr(M), since the denominator is 0.6

Example 2.2 (Uniform distribution on the plane):

Suppose the dartboard is now the entire plane.  That is, we want a way to select a point
in the plane at random, or a uniform probability distribution over the entire plane.  We
want to say, for instance, that the probability that the point lies above the x-axis is ½, or
that with probability 1/4 it lies in the quadrant bounded by the positive x- and y-axis.
Any infinite horizontal or vertical strip of width 1 should have an equal probability of
containing the point.
No conventional countably additive probability distribution has these features.  A
probability function Pr is countably additive if whenever E1, E2, … are exclusive
outcomes and each has a well-defined probability, then Pr(∨Ei) = ΣPr(Ei), where the
disjunction and sum run from 1 to ∞.  Now the plane is a countable disjoint union of
strips of width 1, namely those of the form k ≤ x < k+1 where k is an integer.  There is
no way to assign an equal positive value to the probability of each such strip, since the
countable sum would then be infinite, while the probability that the point lies somewhere
in the entire plane is just 1.  Yet it does not seem unreasonable that there could be a
uniform probability distribution which makes it equally likely that a point lies in any strip
of width 1.

Example 2.3 (The de Finetti lottery):

Famously, de Finetti argued that we should be able to make sense of a lottery in which
the number of tickets issued is countably infinite, one for each positive integer, and each
ticket has an equal chance to win.7  The claim amounts to the suggestion that we can
have a uniform probability distribution over the natural numbers.  A little reflection
shows that the same difficulty arises as for the uniform distribution over the plane:  there
is no positive value that we can assign to each number in such a way that the countable

                                                
6 This example is discussed in Bartha and Hitchcock [1999], which provides a different analysis.
7 De Finetti [1975], 123.
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sum is 1.  Conventional mathematics compels us to assign lower probability values to
higher ticket numbers:  if pn is the probability that ticket number n wins, then pn → 0 as
n → ∞.  Considerations of symmetry, however, make such a lottery seem reasonable.
At the very least, we should not rule it out a priori simply because we lack a
mathematical model.

De Finetti’s conclusion, based on the lottery of Example 2.3, was that countable
additivity should be dropped, and indeed, non-standard solutions to the De Finetti lottery
introduce probability functions that are not countably additive.  We have a different proposal.
For certain problems, a class of symmetries rather than an absolute probability measure should
be taken as the most fundamental notion.  In each of the examples, symmetries appear to justify
assignments of equal likelihood or, as we shall say, equi-possibility, to certain outcomes, as well
as certain conditional probability assignments.  The dart is as likely to hit the left half of the
dartboard as the right half; one ticket is as likely as any other to win.  Ordinary measures on
these spaces do not allow us to derive the relevant conditional probabilities, because they would
require us to conditionalize upon an outcome whose probability is zero.

Two techniques are commonly employed for dealing with such situations.8  The first is to
use Popper functions, which amounts to taking a conditional probability function C(A, B) as
primitive.  We can then assign a value C(A, B) to the conditional probability of A given B even
when Pr(B) = 0.  The absolute probability Pr(B) is defined as C(B, T ).

In one sense, Popper functions are just what we need.  For instance, in Example 2.1,
we could just set C(L, M) = ½:  problem solved!  Our main objection here is that such an
assignment appears arbitrary unless its dependence on considerations of symmetry is made
explicit.  The symmetries on the outcome space, not the Popper function, should be primitive.

The second approach is to use non-standard probability assignments.  Roughly, the idea
is that if B is a proposition that is not impossible, but would normally be assigned probability 0,
we instead assign it an infinitesimal probability value.  Then the conditional probability Pr(A / B)
may still be defined by the usual ratio Pr(A⋅B)/Pr(B).  In Example 1, for instance, we would set
Pr(M) = η for some positive infinitesimal η, and Pr(L) = Pr(L ⋅ M) = η/2.  Then Pr(L / M) =
Pr(L ⋅ M) / Pr(M) = ½, as required.

There are a number of concerns here.  One problem is the arbitrariness in the choice of
the infinitesimal η, which is not dictated by the problem.  Of course, η cancels out in computing
the conditional probabilities of interest, but what happens if we want to conditionalize yet again?
For instance, suppose we further restrict our attention to a subset E of M consisting of just three
points.  We can argue, again by symmetry, that given that the dart lands in E, it is equally likely
to be at any of the three points.  This requires an assignment to Pr(E) of an infinitesimal an order
of magnitude smaller than η.  The non-standard approach appears to require a degree of
mathematical complexity that far outstrips the much simpler appeal to symmetry that, in any
case, really grounds our beliefs about the relevant conditional probabilities.  More generally, the
introduction of non-standard probabilities is unwarranted if a simpler approach can be
developed.

                                                
8 See McGee [1994] for a presentation of both approaches and an argument that they are equivalent.
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In this paper, we outline such an alternative, based on the principle that two symmetrical
outcomes are equi-possible.  Given a class of symmetries satisfying certain reasonable
properties, we show that we can, in a relatively straightforward manner, define equi-possible
sets and conditional probabilities.9  In some cases, we can define a relation of equi-possibility
(and relative probability) even though no corresponding probability measure is definable, which
explains our opening gloss on Laplace’s version of PI.  There really can be relations of equi-
possibility which precede any absolute probability assignment.  In cases where probabilities are
definable, however, the picture to keep in mind is the following:

     Class of symmetries on X

å æ

      PrX        PrE

In the applications of interest, E is a subset of X that has probability 0.  PrX is a probability
distribution on the whole set of outcomes X.  PrE is probability conditionalized upon E; we can
think of it as the probability function that ‘lives’ on the tiny subspace of outcomes consistent with
E.  In general, there is no conventional way to pass from PrX to PrE (or vice versa), yet there is
often an intuitive link, such as the idea that both distributions should be uniform.  Our proposal is
that we should regard the two probability functions as linked by a ‘common cause’, an
underlying class of symmetries.

Section 3 introduces the concept of relative probability.  Section 4 shows how
symmetries can be used to define a relation of commensurability between sets.  Section 5
shows how to define the relative probability of two commensurable sets.  Finally, in section 6,
the approach is applied to the three examples.

3.  Relative probability.  In this section, we provide a general, ‘top-down’ explication of
relative probability, together with some basic axioms that the relation should satisfy.  The
objective is to show that the concept of the relative epistemic probability of two outcomes can
be defined using a Ramsey-style approach.  The definition plays no role, however, in what
follows.  In the remainder of the paper, a ‘bottom-up’ approach is developed from the starting
point that if two outcomes are symmetric, they are equi-possible, i.e., they have relative
probability 1.  We examine what constraints are needed on the symmetries so that a relative
probability function can be constructed.10

Suppose that Pr(A) = k ⋅ Pr(B).  Then the expected monetary value of a contract that
pays $1 if A is k times the expected monetary value of a contract that pays $1 if B:

val[$1 if A] = k ⋅ val[$1 if B].

Equivalently,

                                                
9 We emphasize a few simple applications, since we believe that the approach developed here needs
refinement before it can be generalized.
10 Confession:  in the following sections, we develop only a limited concept of relative probability which is
not guaranteed to satisfy the additivity axiom (R3).  We hope eventually to provide a fuller discussion.
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val[$1 if A] = val[$k if B].

The idea of inverting this reasoning and defining subjective probability in terms of value or
desirability is familiar.11  The variation we wish to introduce here is to notice that sometimes we
can make sense of the idea that two contracts have equal value even though neither contract,
taken in isolation, has any value that makes sense!  For example, it makes no sense to assign a
precise value to a ticket in the de Finetti lottery:  any positive value is too high, while zero is too
low.  Nevertheless, we can acknowledge that any two tickets have equal value, or that having
two tickets is twice as valuable as having one.  Accordingly, we generalize the relation above by
writing

[$1 if A] ~ [$k if B]

to signify that these two contracts are equally valuable.  We can define relative probability in
terms of this relation.

Definition 3.1 (Relative probability):

R(A, B) = k iff [$1 if A] ~ [$k if B]; we say that k is the probability of A relative to B.

In the case where A and B both have a well-defined absolute probability and Pr(B) is
non-zero, R(A, B) is just the ratio Pr(A) / Pr(B).  In general, relative probability should satisfy
the following axioms, which parallel the standard axioms for probability functions, and are all
easily derived in cases where R(A, B) = Pr(A) / Pr(B) with Pr(B) ≠ 0.

(R1) R(A, B) ≥ 0

(R2) R(A, A) = 1

(R3) If A and B are mutually exclusive and R(A, C) and R(B, C) are defined, then
R(A ∨  B, C) = R(A, C) + R(B, C)

(R4) If R(A, C) and R(B, C) are defined and R(B, C) ≠ 0, then

R(A, B) = R(A, C) / R(B, C)

Note that if R is defined via a ratio of absolute probabilities, then R(A ⋅ B, B) =
Pr(A ⋅ B) / Pr(B) is just the conditional probability Pr(A / B).  However, R(A ⋅ B, B) might be
definable even if Pr(B) = 0, and is thus a natural candidate for a more general notion of
conditional probability.

4.  Commensurable Sets.  We move from talk of outcomes to a set-theoretic approach,
which is simpler and, of course, equivalent.  Let X be a set.  A symmetry on X is a function σ:
X → X that is 1-1 and onto and, generally, satisfies certain other properties, which we leave

                                                
11 See Jeffrey [1983], Ramsey [1931].
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unspecified.  Let S be a given class of symmetries on X.  Two subsets A and B of X are equi-
possible if B = σ(A) for some symmetry σ ∈ S; in this case, we will speak of B as a copy of A.

The philosophical foundation for the inference from symmetry to equi-possibility is the
assumption that a symmetry, in one’s epistemic state, between A and B means that there are no
resources within that epistemic state for “pointing to” or distinguishing one of the outcomes in the
pair {A, B}.  Roughly speaking, every known feature used to assign likelihood is the same for A
and B.  It follows, in the terminology of the previous section, that one must regard the contracts
[$1 if A] and [$1 if B] as equally valuable, since one cannot even tell them apart.  This
assumption entails that only a distinguished class of mappings count as symmetries.  For
example, if X is a finite-dimensional Euclidean space, a symmetry mapping σ must be an
isometry, or distance-preserving function.  If two plane figures are related by an isometry, then
knowledge of inter-point distances alone does not allow one to tell them apart.  This
fundamental assumption underlies everything that follows.

Our objective is to define a relation of commensurability, intended to capture the idea
that the likelihood of two sets (or the value of the appropriate contracts) can be compared.
Before we can even make sense of equi-possibility, however, we have to make sure that the
class of symmetries is neither too small nor too big.

Definition 4.1 (regularity):

A class S of symmetries is regular if it has the following two properties:

(G) S is a group under function composition; and

(M) For no non-empty subset C of X and positive integers m>n are there symmetries
θ1, …, θm and Ψ1, …, Ψn in S such that

θi j
j

n

i

m

C C( ) ( )⊆
==

Ψ
11

UU ,

where both unions are disjoint.

The reason for the condition (G) is that we want equi-possibility to be an equivalence
relation:

• For all A, A and A are equi-possible (hence, the identity map is in S).
• If A and B are equi-possible, then so are B and A (hence if σ ∈ S, σ -1 ∈ S).
• If A, B and B, C are equi-possible, then A, C are equi-possible (hence S should be

closed under function composition).

We need to make sure that S is at least big enough to satisfy the group axioms.
The reason for the strange-looking condition (M) is to avoid the following counter-

intuitive situation, which can arise if we are too liberal about what counts as a symmetry.

Let A be the positive integers, A1 the positive even integers and A2 the positive odd
integers.  Let X be the set of all integers.  Let the set S of symmetries be the class of all
1-1 onto functions σ:X → X.  We can find σ1 which maps A to A1 and σ2 which maps
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A to A2.  So A = A1 ∪ A2 where A1 and A2 are disjoint, yet each of A1 and A2 is equi-
possible with A.

In such a situation, employing the approach developed in the next section, we would be forced
to say that A is twice as likely as itself!  The condition (M) rules out this possibility, as well as
any case where m copies of A could be placed inside n copies of A even though m > n.  The
label (M) is appropriate because the condition is intimately related to the monotonicity property
of probability measures.  Henceforth, we shall assume that the set S of symmetries on X is
regular, and we will speak of (X, S) as a symmetry space.  Our contention is that regularity is
the minimum requirement for defining a notion of equi-possibility.

Proposition:  Suppose S is a commutative group, i.e., στ = τσ for all σ,τ in S.  Then S is
regular, i.e., the property (M) is satisfied.

Proof: Suppose, for a contradiction, that we have symmetries θ1, …, θm and Ψ1, …, Ψn in S
with m > n such that

θi j
j

n

i

m

C C( ) ( )⊆
==

Ψ
11

UU ,

where both unions are disjoint.  Choose any point x ∈ C.  For some j, Ψj(C) contains θi(x) and
θi′(x) for distinct i and i′; without loss of generality, assume Ψ1(C) contains θ1(x) and θ2(x).
Then Ψ1

-1(θ1(x)) ∈ C and Ψ1
-1(θ2(x)) ∈ C.  So we have θ2(Ψ1

-1(θ1(x))) ∈ θ2(C) and also
θ1(Ψ1

-1(θ2(x))) ∈ θ1(C).  But if all of these operators commute, then θ2(Ψ1
-1(θ1(x))) = θ1(Ψ1

-

1(θ2(x))), so that θ2(C) ∩ θ1(C) is non-empty, a contradiction.

Although symmetry groups are not generally commutative, they are commutative for the
following examples.

Example 4.1:  Let X be the set of all integers, and let S be the set of all mappings of
the form σ(x) = x + k, where k is any integer.  Then S is a commutative group, and
hence regular.  Any two singleton sets are equi-possible.

Example 4.2:  Let X be the Euclidean plane, and let S be the set of all translations, or
mappings of the form σ(x) = x + e, where e is a constant vector.  Then S is a
commutative group.

The following definition of commensurability is sufficient for our purposes.12

Definition 4.2 (Commensurability):

Two sets A and B are commensurable relative to S if:

(1) for some subset C of X (called a divisor of A and B), there are symmetries θ1, …,
θm and Ψ1, …, Ψn in S (with m, n > 0) such that

                                                
12 The definition can be generalized.  As it stands, the definition only handles cases of commensurable sets
A and B where R(A, B) is positive and rational.  This can be extended to handle cases where R(A, B) is
irrational, zero or infinite.
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A Ci
i

m

=
=

θ ( )
1

U and B Cj
j

n

=
=

Ψ ( )
1

U

where both unions are disjoint; or

(2) for some subset C of X, the pairs A, C and C, B are commensurable.

The first clause describes the case where A is composed of m disjoint copies of C and
B is composed of n disjoint copies.  It includes the special sub-cases where B is a copy of A,
and where B can be written as n disjoint copies of A.  The second clause extends
commensurability to the smallest transitive relation consistent with the first two clauses.  Clearly,
commensurability is an equivalence relation.

Example 4.1 (continued):  By applying clause (2), we can show that any two finite sets
are commensurable.  The set E of even integers and the set O of odd integers are
commensurable.  No finite set is commensurable with any infinite set.

Example 4.2 (continued):  Using the terminology of Example 2.2, any two infinite
horizontal strips of width 1 are commensurable.  So are any two strips of different
widths, so long as the ratio of widths is a positive rational number.

How are two commensurable sets related?  Introducing the following relations helps:

• comm1(A, B) if A and B have a divisor

• commn+1(A, B) if commi(A, B) fails for 1 ≤ i ≤ n, but there is a C such that
commn(A, C) and comm1(C, B)

Each commn is a symmetric relation, and commn(A, B) amounts to the assertion that there is a
sequence of sets A=A1, A2, …, An-1, An=B such that Ai and Ai+1 have a divisor (and that this
does not happen for any integer smaller than n).  Clearly, commn(A, B) implies that A and B are
commensurable, and an inductive argument using Definition 4.2 establishes that if A and B are
commensurable, then commn(A, B) for some n.

5.  Relative Probability Revisited.  Relative probability generalizes the notion of equi-
possibility.  Given a regular set of symmetries, we want to define relative probability in a way
that parallels the definition of commensurability:

Definition 5.1 (Relative Probability):

Suppose (X, S) is a symmetry space, and A, B are commensurable subsets of X.

(1)  If A Ci
i

m

=
=

θ ( )
1

U and B Cj
j

n

=
=

Ψ ( )
1

U for some C, with both unions disjoint, set R(A,

B) = m/n.



10

(2)  If R(A, C) and R(B, C) are defined and R(B, C) ≠ 0, set R(A, B) = R(A, C) /
R(B, C).

If R is well-defined, then the axioms of section 3 are satisfied.13  The following
properties of R are easy consequences of definition 5.1:

1.  If B = σ(A), then R(A, B) = R(B, A) = 1.

2.  If B Ai
i

n

=
=

σ ( )
1

U , then R(B, A) = n.

3.  R(A, B) = 1 / R(B, A) if R(B, A) ≠ 0.14

4.  If R(A, C) and R(B, C) are defined and R(A, C) > 0, then

R(B, A) = R(B, C) / R(A, C)

Of course, we have to show that R is in fact well-defined.  Whether R is well-defined for all
regular symmetry spaces is an open question, but we can show that R is well-defined for the
examples we have been developing, where the group of symmetries is commutative.

Proposition:  If the group of symmetries S is commutative, then R is well-defined.

Proof:  First suppose that A and B have two divisors, C and D.  Write A = mC and B = nC to
indicate that A can be written as m copies of C and B as n copies of C, as in Definition 5.1.
Suppose now that A = m′D and B = n′D, where the relevant symmetries are as in the diagram.
We have to show that m/n = m′/n′.

           D
     θ̄1,…,θ̄m′         Ψ̄1,…,Ψ̄n′

   A         B

      θ1,…,θm         C Ψ1,…,Ψn

For each c∈C, and for 1≤ i ≤ m, θi(c) = θ̄k(d) for some d∈D and some k with 1 ≤ k ≤ m′;
also, for 1 ≤ j ≤ n′, Ψ̄j(d) = Ψl(c*), for some c*∈C and some l with 1 ≤ l ≤ n.  This shows that
for any c∈C and any subscripts i and j, there are c*∈C and subscripts k and l such that Ψ̄j(θ̄k

-

1(θi(c)) = Ψl(c*); by commutativity, it follows that Ψ̄j θi(c) = θ̄kΨl(c*).  Thus,

                                                
13 Except possibly additivity; see note 10.
14 Of course, as we have defined it, R(B, A) is never 0.  The restriction is mentioned here so that the
properties will be valid even if the definition is extended to cover the case where R(B, A) = 0.
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Ψ Ψj i
j

n

k l
l

n

k

m

i

m

C Cθ θ( ) ( )
=

′

==

′

=
⊆

1 111
U UUU ,

and analogous reasoning shows that containment holds in the reverse direction.  By the (M)
property, it follows that m⋅n′ = m′⋅n.
For the general case, A and B are linked by intermediates C1 and C2, as in clause (2) of
Definition 5.1.  Following the discussion at the end of section 4, we can link each of A and B to
each of C1 and C2 by a finite sequence of intermediate sets, such that each pair in succession
has a divisor.  The resulting diagram is a generalized version of the one above, with two sets of
zig-zag patterns joining A to B, one via C1 and the other via C2.  By picking one of the divisors
and constructing the same sort of argument as just given, commutativity and the (M) property
establish that R(A, C1) / R(B, C1) = R(A, C2) / R(B, C2).

6.  Applications.  Summarizing, we have shown that if the set of specified symmetries on a
space of outcomes X is a commutative group, then the relative probability R(A, B) of any two
commensurable sets A and B is well-defined by Definition 5.1.  The restriction to commutative
groups of symmetries is merely a sufficient condition that may be removed in a more complete
study of relative probability than we can provide here.  Despite this limitation, we are now able
to deal, at least in a preliminary manner, with the symmetry arguments presented in the three
examples of section 2.

Examples 2.1 and 2.2:  Take X to be the plane and S to be the set of all translations σ(x) =
x + e, for a fixed vector e.  S is a commutative group, so relative probabilities are well-
defined.  Of course, we should properly include other isometries such as rotations and
reflections in S, not just translations, but then commutativity would fail.  The restriction
to translations means that we cannot regard A and θ(A) as equi-possible, where θ is a
non-trivial rotation or a reflection.  A fuller treatment of relative probabilities should
eliminate this restriction,15 but we are nevertheless able to justify some of the claims
about relative probability mentioned in section 2.
Taking S to include all translations implies that two regions related by a translation are
indistinguishable from a probabilistic point of view.  In Example 2.2, for instance, any
two horizontal strips of equal width are clearly equi-possible, or have relative probability
1, since they are related by a translation.  Two strips having widths whose ratio is a
positive rational number r have relative probability r, since we can find a common
divisor.
In Example 2.1 (the dartboard), we simply restrict the relative probability function to
pairs of sets that are subsets of the unit square, D.  It is then obvious that the horizontal
line M can be written as two copies of L, so that R(L, M) = ½.

                                                
15 Actually, there might be two ways to develop a more adequate notion of relative probability in this
setting.  One is to expand the set of symmetries S as suggested, including all isometries.  Another is to
extend the relation of commensurability and the relative probability function R to countable unions of sets.
Translation invariance is enough to establish the uniqueness of Lebesgue measure as the only countably
additive measure (up to a constant multiple — see (Rudin 1974)); an analogous result might be possible for a
relative probability function.
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Example 2.3:  Take X to be the set of all integers and S to be the set of translations by an
integer, σ(x) = x + k.  Again, S is commutative, so relative probabilities are well-
defined.  If we restrict our attention to the relative probability of pairs of sets that are
subsets of the positive integers, we get the uniform distribution that de Finetti wanted.
Any two singletons are obviously equi-possible.  So are the sets of even and odd
numbers.

As noted in section 2, one advantage of approaching conditionalization using relative
probabilities is the possibility of repeated conditionalization on outcomes with zero probability.
In example 2.1, we might first learn that the dart landed on a particular horizontal line; we then
learn that it landed at a point on that line with rational co-ordinates;  finally we learn that it
landed at one of three points.  In each case, we can talk about relative probabilities, based on
symmetries.

The definitions above are tentative, and the idea of making symmetries the fundamental notion in
a probability assignment is still far from vindicated.  Nevertheless, the above discussion should
contribute to defending the viability of Laplacian “equi-possibility”  as a notion that can stand
independently of probability.
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