First-Order Goggles

First-Order Goggles

Fancier than Boolean goggles!

How they work

- FO goggles are used for looking at FOL sentences. Some parts of the sentence are clearly visible through the goggles, but other parts become fuzzy and illegible.
- The Boolean sentential operators $\wedge, \vee, \neg, \rightarrow$ and \leftrightarrow are clearly visible through the goggles.
- Brackets '(' and ')' are also visible.
- The operators ' $\forall x^{\prime}$, ‘ $\exists x^{\prime}$ etc. are visible, including the variables.
- The identity predicate ' $=$ ’ is visible. All other predicates are fuzzy.

Boolean goggles vs. FO goggles

- The FO goggles are much better than Boolean goggles, in the sense that you see much more sentence structure through them.
- E.g. $\forall x($ Cube $(x) \rightarrow$ Large $(x))$ becomes:

Boolean goggles

FO goggles
$\forall x($
$(x) \rightarrow$

- Note that the Boolean goggles cannot see anything that is inside the scope of a quantifier. Even Boolean operators are invisible, when inside the scope of a quantifier.
- $\forall x($ Cube $(x) \rightarrow$ Large $(x))$ is
-- just ' P ', through Boolean goggles.
- Using FO goggles we can write using 'nonsense' (meaningless)

$$
\begin{equation*}
\forall x(\square)=(x) \rightarrow \tag{x}
\end{equation*}
$$ $\forall x($ Cobo(x) \rightarrow Lenga(x)), or $\forall x(P(x) \rightarrow \mathrm{Q}(\mathrm{x}))$.

Quiz

- Write the following sentences, as they appear through:
i. Boolean goggles
ii. FO goggles

1. $\forall \mathrm{y}$ Cube(y) $\rightarrow \exists \mathrm{z}$ Small(z)

BG:

$$
\mathrm{P} \rightarrow \mathrm{Q}
$$

FOG: $\quad \forall y \operatorname{Crub}(y) \rightarrow \exists z \operatorname{Sinill}(z)$

2. $\neg \exists x$ Cube(x)

BG: $\neg P$

FOG: $\quad \neg \exists x P(x)$

3. $a=b$

BG:
P

FOG: $\quad a=b$

4. $\forall x(\operatorname{Tet}(x) \rightarrow \operatorname{SameRow}(c, x)) \vee \operatorname{Small}(\mathrm{c})$

BG:

 $P \vee Q$FOG:

$$
\forall x(P(x) \rightarrow Q(c, x)) \vee R(c)
$$

5. $\forall x$ Cube $(x) \rightarrow \neg \exists x \neg$ Cube (x)

BG:

$$
P \rightarrow \neg Q
$$

FOG:

$$
\forall x P(x) \rightarrow \neg \exists x \neg P(x)
$$

6. $[\forall z($ Cube($z) \rightarrow$ Large(z)) \wedge Cube(b) $] \rightarrow$ Large(b)

BG:

$$
[P \wedge Q] \rightarrow R
$$

FOG:

$$
[\forall \mathrm{z}(\mathrm{P}(\mathrm{z}) \rightarrow \mathrm{Q}(\mathrm{z})) \wedge \mathrm{P}(\mathrm{~b})] \rightarrow \mathrm{Q}(\mathrm{~b})
$$

7. $\exists x($ Cube $(x) \wedge x \neq a)$

BG: P

FOG: $\quad \exists x(P(x) \wedge x \neq a)$

TT con vs. FO con

- You remember that the argument below isn't TT con?

Cube(a)
$a=b$

Cube(b)

- Wasn't that disappointing?
- Now put the FO goggles on. How does it look?

Criba(a)
$\mathrm{a}=\mathrm{b}$

Criba(b)

- Can you see that the argument is a logical consequence?
- Yes you can!
- So the argument is 'FO consequence'.

FO equivalent

- $\exists x($ Small $(x) \wedge x=c) \Leftrightarrow \operatorname{Small}(c)$?
- Yes. Are they also "FO equivalent"? Put the FO goggles on.
- $\exists x(P(x) \wedge x=c) \Leftrightarrow P(c)$

