Quantifier Equivalences (these cannot be used on formal proofs in F)

(Memorise as many as you can. The importance decreases as you go down the page.)

Quantifier de Morgan

$$\neg \forall x \ P(x) \Leftrightarrow \exists x \ \neg P(x)$$
$$\neg \exists x \ P(x) \Leftrightarrow \forall x \ \neg P(x)$$

Distribution Laws

 $[\exists x (P(x) \land Q(x)) \notin \exists x P(x) \land \exists x Q(x)]$

Quantifying over a sentence, or a wff with a different variable

 $\exists x (P(x) \land Q(x)) \Leftrightarrow \exists x P(x) \land \exists x Q(x)$

$$\forall x \ P \Leftrightarrow P$$

$$\exists x \ P \Leftrightarrow P$$

$$\forall x \ (P \lor Q(x)) \Leftrightarrow P \lor \forall x Q(x)$$

$$\exists x \ (P \land Q(x)) \Leftrightarrow P \land \exists x Q(x)$$

Quantifying over conditionals

$$P \to \forall x Q(x) \Leftrightarrow \forall x (P \to Q(x))$$

 $P \to \exists x Q(x) \Leftrightarrow \exists x (P \to Q(x))$ $\exists x (P \to Q(x))$ is an ok sentence, even though $\exists x (P(x) \to Q(x))$ isn't.
 $\exists x Q(x) \to P \Leftrightarrow \forall x (Q(x) \to P)$ "If anything is Q, then P"
 $\forall x Q(x) \to P \Leftrightarrow \exists x (Q(x) \to P)$ Yes, this one does look really weird.