Philosophy 1102: Introduction to Logic

Department of Philosophy Langara College

Logical and Formal Relations (and Properties)

Here are the main properties and relations that logicians are interested in:

Logical Relation/Property	Symbols	Meaning	
Q is a logical consequence of P (P logically entails Q)	$P \Rightarrow Q$	There's no possible world in which P is true and Q is false.	
P is logically necessary (P is logically true, or analytic)	$\Box P$ $\{\} \Rightarrow P$	P is true in all possible worlds	
P is logically possible		P is true in at least one possible world	
P is logically contingent	$ \begin{array}{l} \Diamond \mathbf{P} \land \neg \Box \mathbf{P}, \\ \Diamond \mathbf{P} \land \Diamond \neg \mathbf{P} \end{array} $	P is true in at least one, but not all, possible worlds	
P is logically equivalent to Q	$P \Leftrightarrow Q$	P has the same truth value as Q in all possible worlds	
P is logically inconsistent with Q	$P \Rightarrow \neg Q,$ $\neg \Diamond (P \land Q)$	There's no possible world in which P and Q are both true	

Note that these "symbols", while used by logicians, are not part of the language FOL.

The table of formal "TT" relations is almost identical; the only difference is that "possible world" is replaced with "row of the truth table".

Formal Relation/Property	Symbols	Meaning
Q is a TT consequence of P	$P \vDash Q$ $P \Rightarrow_{TT} Q$	There's no row of the truth table in which P is true and Q is false.
P is TT necessary (a tautology)	$\Box_{TT}P$ $\{\} \models P$	P is true in all rows of the truth table
P is TT possible	$\diamond_{\mathrm{TT}}\mathbf{P}$	P is true in at least one row of the truth table
P is TT equivalent to Q	$P \Leftrightarrow_{TT} Q$	P has the same truth value as Q in all rows of the truth table
P is TT inconsistent with Q	$P \vDash \neg Q,$ $\neg \diamond_{\rm TT}(P \land Q)$	There's no row of the truth table in which P and Q are both true

Note that these "symbols", while used by logicians, are not part of the language FOL.

If we compare the properties *logically necessary* and *tautology* (or TT necessary) then they look very similar. The difference between them arises from the fact that some rows of the truth table may describe impossible worlds. Hence P may be false in some row of its truth table, even if P is true in all possible worlds.

An example of such a sentence is \neg Older(fred, fred). Fred cannot possibly be older than himself, so this sentence is true in all possible worlds. But, through the Boolean Goggles, the sentence (structure) is $\neg A$. The truth table for this sentence is:

А	¬Α
Т	F
F	Т

We see that the sentence $\neg A$ is false in the first row, so $\neg A$, which is really $\neg Older(fred, fred)$, is not a tautology. On the other hand, any sentence which *is* a tautology is automatically a logical necessity is well.

Examples of TT necessary, logically necessary, sentences.

	logically necessary?	TT necessary?	Remarks
$Tet(a) \wedge Cube(b)$	×	×	logically contingent
$Tet(a) \wedge Cube(a)$	×	×	logically impossible
1+1=2	\checkmark	×	
\neg (Cube(a) $\land \neg$ Cube(a))	\checkmark	 ✓ 	
\neg Larger(a, b) \lor Smaller(b, a)	\checkmark	×	

Hints:

(i) P is necessary $\Leftrightarrow \neg P$ is impossible

(and P is contingent $\Leftrightarrow \neg$ P is contingent)

(works for both logical and TT necessity)

So if the sentence is a negation, i.e. of the form $\neg P$, then just look at P. If P is impossible, the $\neg P$ is necessary. If P is contingent, then $\neg P$ is contingent as well, so that $\neg P$ isn't necessary.

(ii) Sometimes you can use a *de Morgan* rule to convert the sentence to a negation, i.e. "pull out the \neg ". Then use hint (i).